Perinatal nephropathies. (1/1030)

The purpose of this paper is to review the development of the mammalian kidney and to assess the influence that various perinatal manipulations may have on the developmental process either morphologically or functionally. Immature kidneys in general have less functional capacity than adult kidneys and a low rate of glomerular filtration, perhaps related to renal blood flow, which appears to limit the disposition of a fluid or solute load. Tubular reabsorption is also limited leading to the urinary loss of glucose, amino acids, bicarbonate and phosphate. Although the relatively low function of the immature kidney is a normal part of development, its capacity to respond under conditions of stress may be less adequate than in adults. An additional concern is that a variety of perinatal manipulations, such as the incidental or accidental ingestion of a chemical, may lead to varying degrees of altered morphogenesis or functional development of the kidney. Chemical induced renal anomalies may be of several types, but in typical teratology experiments hydronephrosis may be the most frequent observation. The functional consequences of these renal malformations may be lethal or inconsequential or while an animal may be able to survive and develop normally in the presence of a renal malformation, it is possible that a stressful situation would unmask a functional malformation which could compromise survival. Thus, some renal abnormalities may be subtle enough to go unnoticed without experimental tests. Without such tests it is impossible to evaluate the effect of functional alterations on successful adaptation.  (+info)

Involvement of cytochromes P-450 2E1 and 3A4 in the 5-hydroxylation of salicylate in humans. (2/1030)

Hydroxylation of salicylate into 2,3 and 2,5-dihydroxybenzoic acids (2,3-DHBA and 2,5-DHBA) by human liver microsomal preparations was investigated. Kinetic studies demonstrated that salicylate was 5-hydroxylated with two apparent Km: one high-affinity Km of 606 microM and one low-affinity Km greater than 2 mM. Liver microsomes prepared from 15 human samples catalyzed the formation of 2,5-DHBA at metabolic rate of 21.7 +/- 8.5 pmol/mg/min. The formation of 2, 3-DHBA was not P-450 dependent. Formation of 2,5-DHBA was inhibited by 36 +/- 14% following preincubation of microsomes with diethyldithiocarbamate, a mechanism-based selective inhibitor of P-450 2E1. Furthermore, the efficiency of inhibition was significantly correlated with four catalytic activities specific to P-450 2E1, whereas the residual activity was correlated with three P-450 3A4 catalytic activities. Troleandomycin, a mechanism-based inhibitor selective to P-450 3A4, inhibited by 30 +/- 12% the 5-hydroxylation of salicylate, and this inhibition was significantly correlated with nifedipine oxidation, specific to P-450 3A4. The capability of seven recombinant human P-450s to hydroxylate salicylate demonstrated that P-450 2E1 and 3A4 contributed to 2, 5-DHBA formation in approximately equal proportions. The Km values of recombinant P-450 2E1 and 3A4, 280 and 513 microM, respectively, are in the same range as the high-affinity Km measured with human liver microsomes. The plasmatic metabolic ratio 2,5-DHBA/salicylate, measured 2 h after ingestion of 1 g acetylsalicylate, was increased 3-fold in 12 alcoholic patients at the beginning of their withdrawal period versus 15 control subjects. These results confirm that P-450 2E1, inducible by ethanol, is involved in the 5-hydroxylation of salicylate in humans. Furthermore, this ratio was still increased by 2-fold 1 week after ethanol withdrawal. This finding suggests that P-450 3A4, known to be also inducible by alcoholic beverages, plays an important role in this increase, because P-450 2E1 returned to normal levels in less than 3 days after ethanol withdrawal. Finally, in vivo and in vitro data demonstrated that P-450 2E1 and P-450 3A4, both inducible by alcohols, catalyzed the 5-hydroxylation of salicylate.  (+info)

Inhibition of cyclooxygenase-2 expression by 4-trifluoromethyl derivatives of salicylate, triflusal, and its deacetylated metabolite, 2-hydroxy-4-trifluoromethylbenzoic acid. (3/1030)

The therapeutic potential of drugs that block the induction of cyclooxygenase-2 has been emphasized. When two 4-trifluoromethyl salicylate derivatives [2-acetoxy-4-trifluoromethyl-benzoic acid (triflusal) and its deacetylated metabolite 2-hydroxy-4-trifluoromethylbenzoic acid (HTB)] were compared with aspirin and sodium salicylate as cyclooxygenase-2 (COX-2) inhibitors, we observed that in bacterial lipopolysaccharide-activated human blood, triflusal, aspirin, and HTB, but not sodium salicylate, inhibited COX-2-mediated prostaglandin E2 (PGE2) production (IC50 = 0.16, 0.18, 0.39, and >10 mM, respectively). However, only triflusal and aspirin inhibited purified COX-2 enzyme. To test this apparent discrepancy, we realized that HTB and triflusal (but neither aspirin nor salicylate) produced a concentration-dependent inhibition of COX-2 protein expression in peripheral human mononuclear cells. This observation was further confirmed in a rat air pouch model in vivo, in which both aspirin and triflusal inhibited PGE2 production (ID50 = 18.9 and 11.4 mg/kg p.o., respectively) but only triflusal-treated animals showed a decrease in COX-2 expression. This different behavior may be, at least in part, due to the ability of HTB and triflusal to block the activation of the transcription factor nuclear factor-kappaB to a higher extent than aspirin and sodium salicylate. Thus, in addition to inhibiting the COX-2 activity at therapeutic concentrations, triflusal is able to block through its metabolite HTB the expression of new enzyme, and hence the resumption of PGE2 synthesis. Triflusal and HTB may exert beneficial effects in processes in which de novo COX-2 expression is involved and, in a broader sense, in pathological situations in which genes under nuclear factor-kappaB control are up-regulated.  (+info)

Growth in the presence of salicylate increases fluoroquinolone resistance in Staphylococcus aureus. (4/1030)

Salicylate and acetylsalicylate slightly increased fluoroquinolone resistance in ciprofloxacin-susceptible and -resistant Staphylococcus aureus. Salicylate allowed a greater number of cells from ciprofloxacin-susceptible and -resistant strains to survive on high fluoroquinolone concentrations. Salicylate also increased the frequency with which a susceptible strain mutated to become more resistant to ciprofloxacin.  (+info)

NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10. (5/1030)

Two genes, nahG and nahW, encoding two independent salicylate 1-hydroxylases have been identified in the naphthalene-degrading strain Pseudomonas stutzeri AN10. While nahG resides in the same transcriptional unit as the meta-cleavage pathway genes, forming the naphthalene degradation lower pathway, nahW is situated outside but in close proximity to this transcriptional unit. The nahG and nahW genes of P. stutzeri AN10 are induced and expressed upon incubation with salicylate, and the enzymes that are encoded, NahG and NahW, are involved in naphthalene and salicylate metabolism. Both genes, nahG and nahW, have been cloned in Escherichia coli JM109. The overexpression of these genes yields peptides with apparent molecular masses of 46 kDa (NahG) and 43 kDa (NahW), respectively. Both enzymes exhibit broad substrate specificities and metabolize salicylate, methylsalicylates, and chlorosalicylates. However, the relative rates by which the substituted analogs are transformed differ considerably.  (+info)

4-trifluoromethyl derivatives of salicylate, triflusal and its main metabolite 2-hydroxy-4-trifluoromethylbenzoic acid, are potent inhibitors of nuclear factor kappaB activation. (6/1030)

1. The effect of two derivatives of salicylate, 2-hydroxy-4-trifluoromethylbenzoic acid (HTB) and 2-acetoxy-4-trifluoromethylbenzoic acid (triflusal), on the activation of NF-kappaB elicited by tumour necrosis factor-alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVEC) was tested. 2. The expression of the mRNA of vascular cell adhesion molecule-1 (VCAM-1) was studied as an example of a gene the expression of which is regulated by NF-kappaB. To extend these findings to other systems, the induction of nitric oxide synthase in rat adherent peritoneal macrophages was studied. 3. Both HTB and triflusal were more potent than aspirin or salicylate as inhibitors of the nuclear translocation of NF-kappaB. The calculation of the IC50 values showed approximately 2 mM for HTB, 4 mM for aspirin and >4 mM for salicylate. 4. Comparison of the potency of these compounds on VCAM-1 mRNA expression showed complete inhibition by both triflusal and HTB at a concentration of 4 mM whereas aspirin and salicylate produced only 36-43% inhibition at the same concentration. 5. Inhibition of NF-kappaB activation was also observed in rat peritoneal macrophages stimulated via their receptors for the Fc portion of the antibody molecule with IgG/ovalbumin immune complexes. This was accompanied by a dose-dependent inhibition of nitrite production by the L-arginine pathway via iNOS. IC50 values for this effect were 1.13+/-0.12 mM (triflusal), 1.84+/-0.34 (HTB), 6.08+/-1.53 mM (aspirin) and 9.16+/-1.9 mM (salicylate). 6. These data indicate that the incorporation of a 4-trifluoromethyl group to the salicylate molecule strongly enhances its inhibitory effect on NF-kappaB activation, VCAM-1 mRNA expression and iNOS induction, irrespective of the presence of the acetyl moiety involved in the inhibition of cyclo-oxygenase.  (+info)

Reye's syndrome in the United States from 1981 through 1997. (7/1030)

BACKGROUND: Reye's syndrome is characterized by encephalopathy and fatty degeneration of the liver, usually after influenza or varicella. Beginning in 1980, warnings were issued about the use of salicylates in children with those viral infections because of the risk of Reye's syndrome. METHODS: To describe the pattern of Reye's syndrome in the United States, characteristics of the patients, and risk factors for poor outcomes, we analyzed national surveillance data collected from December 1980 through November 1997. The surveillance system is based on voluntary reporting with the use of a standard case-report form. RESULTS: From December 1980 through November 1997 (surveillance years 1981 through 1997), 1207 cases of Reye's syndrome were reported in patients less than 18 years of age. Among those for whom data on race and sex were available, 93 percent were white and 52 percent were girls. The number of reported cases of Reye's syndrome declined sharply after the association of Reye's syndrome with aspirin was reported. After a peak of 555 cases in children reported in 1980, there have been no more than 36 cases per year since 1987. Antecedent illnesses were reported in 93 percent of the children, and detectable blood salicylate levels in 82 percent. The overall case fatality rate was 31 percent. The case fatality rate was highest in children under five years of age (relative risk, 1.8; 95 percent confidence interval, 1.5 to 2.1) and in those with a serum ammonia level above 45 microg per deciliter (26 micromol per liter) (relative risk, 3.4; 95 percent confidence interval, 1.9 to 6.2). CONCLUSIONS: Since 1980, when the association between Reye's syndrome and the use of aspirin during varicella or influenza-like illness was first reported, there has been a sharp decline in the number of infants and children reported to have Reye's syndrome. Because Reye's syndrome is now very rare, any infant or child suspected of having this disorder should undergo extensive investigation to rule out the treatable inborn metabolic disorders that can mimic Reye's syndrome.  (+info)

Enhancing effects of salicylate on tonic and phasic block of Na+ channels by class 1 antiarrhythmic agents in the ventricular myocytes and the guinea pig papillary muscle. (8/1030)

OBJECTIVE: To study the interaction between salicylate and class 1 antiarrhythmic agents. METHODS: The effects of salicylate on class 1 antiarrhythmic agent-induced tonic and phasic block of the Na+ current (INa) of ventricular myocytes and the upstroke velocity of the action potential (Vmax) of papillary muscles were examined by both the patch clamp technique and conventional microelectrode techniques. RESULTS: Salicylate enhanced quinidine-induced tonic and phasic block of INa at a holding potential of -100 mV but not at a holding potential of -140 mV; this enhancement was accompanied by a shift of the hinfinity curve in the presence of quinidine in a further hyperpolarized direction, although salicylate alone did not affect INa. Salicylate enhanced the tonic and phasic block of Vmax induced by quinidine, aprindine and disopyramide but had little effect on that induced by procainamide or mexiletine; the enhancing effects were related to the liposolubility of the drugs. CONCLUSIONS: Salicylate enhanced tonic and phasic block of Na+ channels induced by class 1 highly liposoluble antiarrhythmic agents. Based on the modulated receptor hypothesis, it is probable that this enhancement was mediated by an increase in the affinity of Na+ channel blockers with high lipid solubility to the inactivated state channels.  (+info)