Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53. (1/434)

In vitro, the S100B protein interacts with baculovirus recombinant p53 protein and protects p53 from thermal denaturation. This effect is isoform-specific and is not observed with S100A1, S100A6, or calmodulin. Using truncated p53 proteins in the N-terminal (p53(1-320)) and C-terminal (p53(73-393)) domains, we localized the S100B-binding region to the C-terminal region of p53. We have confirmed a calcium-dependent interaction of the S100B with a synthetic peptide corresponding to the C-terminal region of p53 (residues 319-393 in human p53) using plasmon resonance experiments on a BIAcore system. In the presence of calcium, the equilibrium affinity of the S100B for the C-terminal region of p53 immobilized on the sensor chip was 24 +/- 10 nM. To narrow down the region within p53 involved in S100B binding, two synthetic peptides, O1(357-381) (residues 357-381 in mouse p53) and YF-O2(320-346) (residues 320-346 in mouse p53), covering the C-terminal region of p53 were compared for their interaction with purified S100B. Only YF-O2 peptide interacts with S100B with high affinity. The YF-O2 motif is a critical determinant for the thermostability of p53 and also corresponds to a domain responsible for cytoplasmic sequestration of p53. Our results may explain the rescue of nuclear wild type p53 activities by S100B in fibroblast cell lines expressing the temperature-sensitive p53val135 mutant at the nonpermissive temperature.  (+info)

The use of dipolar couplings for determining the solution structure of rat apo-S100B(betabeta). (2/434)

The relative orientations of adjacent structural elements without many well-defined NOE contacts between them are typically poorly defined in NMR structures. For apo-S100B(betabeta) and the structurally homologous protein calcyclin, the solution structures determined by conventional NMR exhibited considerable differences and made it impossible to draw unambiguous conclusions regarding the Ca2+-induced conformational change required for target protein binding. The structure of rat apo-S100B(betabeta) was recalculated using a large number of constraints derived from dipolar couplings that were measured in a dilute liquid crystalline phase. The dipolar couplings orient bond vectors relative to a single-axis system, and thereby remove much of the uncertainty in NOE-based structures. The structure of apo-S100B(betabeta) indicates a minimal change in the first, pseudo-EF-hand Ca2+ binding site, but a large reorientation of helix 3 in the second, classical EF-hand upon Ca2+ binding.  (+info)

Activation of retinal guanylyl cyclase-1 by Ca2+-binding proteins involves its dimerization. (3/434)

Retinal guanylyl cyclase-1 (retGC-1), a key enzyme in phototransduction, is activated by guanylyl cyclase-activating proteins (GCAPs) if [Ca2+] is less than 300 nM. The activation is believed to be essential for the recovery of photoreceptors to the dark state; however, the molecular mechanism of the activation is unknown. Here, we report that dimerization of retGC-1 is involved in its activation by GCAPs. The GC activity and the formation of a 210-kDa cross-linked product of retGC-1 were monitored in bovine rod outer segment homogenates, GCAPs-free bovine rod outer segment membranes and recombinant bovine retGC-1 expressed in COS-7 cells. In addition to recombinant bovine GCAPs, constitutively active mutants of GCAPs that activate retGC-1 in a [Ca2+]-independent manner and bovine brain S100b that activates retGC-1 in the presence of approximately 10 microM [Ca2+] were used to investigate whether these activations take place through a similar mechanism, and whether [Ca2+] is directly involved in the dimerization. We found that a monomeric form of retGC-1 ( approximately 110 kDa) was mainly observed whenever GC activity was at basal or low levels. However, the 210-kDa product was increased whenever the GC activity was stimulated by any Ca2+-binding proteins used. We also found that [Ca2+] did not directly regulate the formation of the 210-kDa product. The 210-kDa product was detected in a purified GC preparation and did not contain GCAPs even when the formation of the 210-kDa product was stimulated by GCAPs. These data strongly suggest that the 210-kDa cross-linked product is a homodimer of retGC-1. We conclude that inactive retGC-1 is predominantly a monomeric form, and that dimerization of retGC-1 may be an essential step for its activation by active forms of GCAPs.  (+info)

Molecular modeling of single polypeptide chain of calcium-binding protein p26olf from dimeric S100B(betabeta). (4/434)

P26olf from olfactory tissue of frog, which may be involved in olfactory transduction or adaptation, is a Ca2+-binding protein with 217 amino acids. The p26olf molecule contains two homologous parts consisting of the N-terminal half with amino acids 1-109 and the C-terminal half with amino acids 110-217. Each half resembles S100 protein with about 100 amino acids and contains two helix-loop-helix Ca2+-binding structural motifs known as EF-hands: a normal EF-hand at the C-terminus and a pseudo EF-hand at the N-terminus. Multiple alignment of the two S100-like domains of p26olf with 18 S100 proteins indicated that the C-terminal putative EF-hand of each domain contains a four-residue insertion when compared with the typical EF-hand motifs in the S100 protein, while the N-terminal EF-hand is homologous to its pseudo EF-hand. We constructed a three-dimensional model of the p26olf molecule based on results of the multiple alignment and NMR structures of dimeric S100B(betabeta) in the Ca2+-free state. The predicted structure of the p26olf single polypeptide chain satisfactorily adopts a folding pattern remarkably similar to dimeric S100B(betabeta). Each domain of p26olf consists of a unicornate-type four-helix bundle and they interact with each other in an antiparallel manner forming an X-type four-helix bundle between the two domains. The two S100-like domains of p26olf are linked by a loop with no steric hindrance, suggesting that this loop might play an important role in the function of p26olf. The circular dichroism spectral data support the predicted structure of p26olf and indicate that Ca2+-dependent conformational changes occur. Since the C-terminal putative EF-hand of each domain fully keeps the helix-loop-helix motif having a longer Ca2+-binding loop, regardless of the four-residue insertion, we propose that it is a new, novel EF-hand, although it is unclear whether this EF-hand binds Ca2+. P26olf is a new member of the S100 protein family.  (+info)

Neuronal survival activity of s100betabeta is enhanced by calcineurin inhibitors and requires activation of NF-kappaB. (5/434)

S100betabeta is a calcium binding, neurotrophic protein produced by nonneuronal cells in the nervous system. The pathway by which it enhances neuronal survival is unknown. Here we show that S100betabeta enhances survival of embryonic chick forebrain neurons in a dose-dependent manner. In the presence of suboptimal amounts of S100betabeta, neuronal survival is enhanced by the immunosuppressants FK506 and cyclosporin A at concentrations that inhibit calcineurin, which is present in these cells. Rapamycin, an immunosuppressant that does not inhibit calcineurin, did not enhance cell survival. Cypermethrin, a direct and highly specific calcineurin inhibitor, mimicked the immunophilin ligands in its neurotrophic effect. None of the drugs stimulated neuronal survival in the absence of S100betabeta. In the presence of suboptimal amounts of S100betabeta, FK506, cyclosporin A, and cypermethrin (but not rapamycin) also increased NF-kappaB activity, as measured by immunofluorescence of cells stained with antibody to the active subunit (p65) and by immunoblotting of nuclear extracts. Antioxidant and glucocorticoid inhibitors of NF-kappaB decreased both the amount of active NF-kappaB and the survival of neurons caused by S100betabeta alone or in the presence of augmenting drugs. We conclude that S100betabeta enhances the survival of chick embryo forebrain neurons through the activation of NF-kappaB.  (+info)

Concerted regulation of wild-type p53 nuclear accumulation and activation by S100B and calcium-dependent protein kinase C. (6/434)

The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  (+info)

Structural changes in the C-terminus of Ca2+-bound rat S100B (beta beta) upon binding to a peptide derived from the C-terminal regulatory domain of p53. (7/434)

S100B(beta beta) is a dimeric Ca2+-binding protein that interacts with p53, inhibits its phosphorylation by protein kinase C (PKC) and promotes disassembly of the p53 tetramer. Likewise, a 22 residue peptide derived from the C-terminal regulatory domain of p53 has been shown to interact with S100B(beta beta) in a Ca2+-dependent manner and inhibits its phosphorylation by PKC. Hence, structural studies of Ca2+-loaded S100B(beta beta) bound to the p53 peptide were initiated to characterize this interaction. Analysis of nuclear Overhauser effect (NOE) correlations, amide proton exchange rates, 3J(NH-H alpha) coupling constants, and chemical shift index data show that, like apo- and Ca2+-bound S100B(beta beta), S100B remains a dimer in the p53 peptide complex, and each subunit has four helices (helix 1, Glu2-Arg20; helix 2, Lys29-Asn38; helix 3, Gln50-Asp61; helix 4, Phe70-Phe87), four loops (loop 1, Glu21-His25; loop 2, Glu39-Glu49; loop 3, Glu62-Gly66; loop 4, Phe88-Glu91), and two beta-strands (beta-strand 1, Lys26-Lys28; beta-strand 2, Glu67-Asp69), which forms a short antiparallel beta-sheet. However, in the presence of the p53 peptide helix 4 is longer by five residues than in apo- or Ca2+-bound S100B(beta beta). Furthermore, the amide proton exchange rates in helix 3 (K55, V56, E58, T59, L60, D61) are significantly slower than those of Ca2+-bound S100B(beta beta). Together, these observations plus intermolecular NOE correlations between the p53 peptide and S100B(beta beta) support the notion that the p53 peptide binds in a region of S100B(beta beta), which includes residues in helix 2, helix 3, loop 2, and the C-terminal loop, and that binding of the p53 peptide interacts with and induces the extension of helix 4.  (+info)

The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments. (8/434)

The Ca2+-modulated, dimeric proteins of the EF-hand (helix-loop-helix) type, S100A1 and S100B, that have been shown to inhibit microtubule (MT) protein assembly and to promote MT disassembly, interact with the type III intermediate filament (IF) subunits, desmin and glial fibrillary acidic protein (GFAP), with a stoichiometry of 2 mol of IF subunit/mol of S100A1 or S100B dimer and an affinity of 0.5-1.0 microM in the presence of a few micromolar concentrations of Ca2+. Binding of S100A1 and S100B results in inhibition of desmin and GFAP assemblies into IFs and stimulation of the disassembly of preformed desmin and GFAP IFs. S100A1 and S100B interact with a stretch of residues in the N-terminal (head) domain of desmin and GFAP, thereby blocking the head-to-tail process of IF elongation. The C-terminal extension of S100A1 (and, likely, S100B) represents a critical part of the site that recognizes desmin and GFAP. S100B is localized to IFs within cells, suggesting that it might have a role in remodeling IFs upon elevation of cytosolic Ca2+ concentration by avoiding excess IF assembly and/or promoting IF disassembly in vivo. S100A1, that is not localized to IFs, might also play a role in the regulation of IF dynamics by binding to and sequestering unassembled IF subunits. Together, these observations suggest that S100A1 and S100B may be regarded as Ca2+-dependent regulators of the state of assembly of two important elements of the cytoskeleton, IFs and MTs, and, potentially, of MT- and IF-based activities.  (+info)