Long-range oxidative damage to DNA: effects of distance and sequence. (1/370)

INTRODUCTION: Oxidative damage to DNA in vivo can lead to mutations and cancer. DNA damage and repair studies have not yet revealed whether permanent oxidative lesions are generated by charges migrating over long distances. Both photoexcited *Rh(III) and ground-state Ru(III) intercalators were previously shown to oxidize guanine bases from a remote site in oligonucleotide duplexes by DNA-mediated electron transfer. Here we examine much longer charge-transport distances and explore the sensitivity of the reaction to intervening sequences. RESULTS: Oxidative damage was examined in a series of DNA duplexes containing a pendant intercalating photooxidant. These studies revealed a shallow dependence on distance and no dependence on the phasing orientation of the oxidant relative to the site of damage, 5'-GG-3'. The intervening DNA sequence has a significant effect on the yield of guanine oxidation, however. Oxidation through multiple 5'-TA-3' steps is substantially diminished compared to through other base steps. We observed intraduplex guanine oxidation by tethered *Rh(III) and Ru(III) over a distance of 200 A. The distribution of oxidized guanine varied as a function of temperature between 5 and 35 degrees C, with an increase in the proportion of long-range damage (> 100 A) occurring at higher temperatures. CONCLUSIONS: Guanines are oxidized as a result of DNA-mediated charge transport over significant distances (e.g. 200 A). Although long-range charge transfer is dependent on distance, it appears to be modulated by intervening sequence and sequence-dependent dynamics. These discoveries hold important implications with respect to DNA damage in vivo.  (+info)

A 2,2"-bipyridine ligand for incorporation into oligodeoxynucleotides: synthesis, stability and fluorescence properties of ruthenium-DNA complexes. (2/370)

A non-nucleoside linker based upon the ligand 2,2'-bipyridine and ethylene glycol is prepared and placed into the backbone of a number of oligonucleo-tides. The bipyridine ligand is reacted with cis -dichloro bis(2,2'-bipyridyl) Ru(II) to generate the relatively substitutionally inert complex based upon the well-characterized tris -2,2'-bipyridyl Ru(II). The ruthenium-containing DNA complexes exhibited UV and fluorescence characteristics that are consistent with those previously observed for simple tris -2,2'-bipyridyl Ru(II) complexes. Oligonucleotides containing the ruthenium complex will form both DNA duplexes and triplexes with stabilities that are slightly better than those formed from simple tethered oligonucleotide probes in which the two hybridizing sequences are tethered by simple tri(ethylene glycol) or hexa(ethylene glycol) linkers.  (+info)

Synthesis of end-labeled multivalent ligands for exploring cell-surface-receptor-ligand interactions. (3/370)

BACKGROUND: Ring-opening metathesis polymerization (ROMP) is a powerful synthetic method for generating unique materials. The functional group tolerance of ruthenium ROMP initiators allows the synthesis of a wide range of biologically active polymers. We generated multivalent ligands that inhibit cell surface L-selectin, a protein that mediates lymphocyte homing and leukocyte recruitment in inflammation. We hypothesized that these ligands function through specific, multivalent binding to L-selection. To examine this and to develop a general method for synthesizing multivalent materials with end-labels, we investigated functionalized enol ethers as capping agents in ruthenium-initiated ROMP. RESULTS: We synthesized a bifunctional molecule that introduces a unique end group by terminating ruthenium-initiated ROMP reactions. This agent contains an enol ether at one end and a masked carboxylic acid at the other. We conjugated a fluorescein derivative to an end-capped neoglycopolymer that had previously been shown to inhibit L-selection function. We used fluorescence microscopy to visualize neoglycopolymer binding to cells displaying L-selectin. Our results suggest that the neoglycopolymers bind specifically to cell surface L-selectin through multivalent interactions. CONCLUSIONS: Ruthenium-initiated ROMP can be used to generate biologically active, multivalent ligands terminated with a latent functional group. The functionalized polymers can be labeled with a variety of molecular tags, including fluorescent molecules, biotin, lipids or antibodies. The ability to conjugate reporter groups to ROMP polymers using this strategy has broad applications in the material and biological sciences.  (+info)

A spectroscopic study of the reaction of NAMI, a novel ruthenium(III)anti-neoplastic complex, with bovine serum albumin. (4/370)

The reaction of Na[transRuCl4Me2SO(Im)] (NAMI; where Im is imidazole), a novel anti-neoplastic ruthenium(III) complex, with BSA, was studied in detail by various physico-chemical techniques. It is shown that NAMI, following chloride hydrolysis, binds bovine serum albumin tightly; spectrophotometric and atomic absorption data point out that up to five ruthenium ions are bound per albumin molecule when BSA is incubated for 24 h with an eightfold excess of NAMI. CD and electronic absorption results show that the various ruthenium centers bound to albumin exhibit well distinct spectroscopic features. The first ruthenium equivalent produces a characteristic positive CD band at 415 nm whereas the following NAMI equivalents produce less specific and less marked spectral effects. At high NAMI/BSA molar ratios a broad negative CD band develops at 590 nm. Evidence is provided that the bound ruthenium centers remain in the oxidation state +3. By analogy with the case of transferrins it is proposed that the BSA-bound ruthenium ions are ligated to surface histidines of the protein; results from chemical modification experiments with diethylpyrocarbonate seem to favor this view. Spectral patterns similar to those shown by NAMI are observed when BSA is reacted with two strictly related ruthenium(III) complexes Na[transRuCl4(Me2SO)2] and H(Im)[transRuCl4(Im)2] (ICR), implying a similar mechanism of interaction in all cases. It is suggested that the described NAMI-BSA adducts may form in vivo and may be relevant for the biological properties of this complex; alternatively NAMI/BSA adducts may be tested as specific carriers of the ruthenium complex to cancer cells. Implications of these findings for the mechanism of action of NAMI and of related ruthenium(III) complexes are discussed.  (+info)

Stimulatory effects of delta-hexachlorocyclohexane on Ca(2+)-activated K(+) currents in GH(3) lactotrophs. (5/370)

delta-Hexachlorocyclohexane (delta-HCH), a lipophilic neurodepressant agent, has been shown to inhibit neurotransmitter release and stimulate ryanodine-sensitive Ca(2+) channels. However, the effect of delta-HCH on neuronal activity remains unclear, although it may enhance the gamma-aminobutyric acid-induced current. Its effects on ionic currents were investigated in rat pituitary GH(3) cells and human neuroblastoma IMR-32 cells. In GH(3) cells, delta-HCH increased the amplitude of Ca(2+)-activated K(+) current (I(K(Ca))). delta-HCH (100 microM) slightly inhibited the amplitude of voltage-dependent K(+) current. delta-HCH (30 microM) suppressed voltage-dependent L-type Ca(2+) current (I(Ca, L)), whereas gamma-HCH (30 microM) had no effect on I(Ca, L). In the inside-out configuration, delta-HCH applied intracellularly did not change the single channel conductance of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels; however, it did increase the channel activity. The delta-HCH-mediated increase in the channel activity is mainly mediated by its increase in the number of long-lived openings. delta-HCH reversibly increased the activity of BK(Ca) channels in a concentration-dependent manner with an EC(50) value of 20 microM. delta-HCH also caused a left shift in the midpoint for the voltage-dependent opening. In contrast, gamma-HCH (30 microM) suppressed the activity of BK(Ca) channels. Under the current-clamp mode, delta-HCH (30 microM) reduced the firing rate of spontaneous action potentials; however, gamma-HCH (30 microM) increased it. In neuroblastoma IMR-32 cells, delta-HCH also increased the amplitude of I(K(Ca)) and stimulated the activity of intermediate-conductance K(Ca) channels. This study provides evidence that delta-HCH is an opener of K(Ca) channels. The effects of delta-HCH on these channels may partially, if not entirely, be responsible for the underlying cellular mechanisms by which delta-HCH affects neuronal or neuroendocrine function.  (+info)

Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. (6/370)

BACKGROUND: Chemical cross-linking is a valuable tool with which to study protein-protein interactions. Recently, a new kind of cross-linking reaction was developed in which the photolysis of associated proteins with visible light in the presence of ammonium persulfate and tris(2,2'-bipyridyl)ruthenium(II) dication or palladium(II) porphyrins results in rapid and efficient covalent coupling (Fancy, D.A. & Kodadek, T. (1999). Proc. Natl. Acad. Sci. USA 96, 6020-6024 and Kim, K., Fancy, D.A. & Kodadek, T. (1999). J. Am. Chem. Soc. 121, 11896-11897). Here, mechanistic and practical aspects of the reaction of importance for its application to biochemical problems are examined. RESULTS: It is shown that the photo-initiated cross-linking chemistry can be optimized for the analysis of protein-protein interactions in crude cell extracts. A number of commonly used epitope or affinity tags survive the reaction in functional form, allowing the simple visualization of the cross-linked products, or their isolation. It is shown that very little light-independent oxidation of protein residues occurs and that significant perturbation of complexes of interest prior to the brief photolysis period does not occur. Finally, evidence is presented that is consistent with a mechanistic model in which ammonium persulfate functions simply as an electron acceptor, facilitating the generation of the key high valent metal complex from the photoexcited species by electron transfer. In the absence of an electron acceptor, a much lower efficiency reaction is observed that appears to involve products resulting from reaction of the excited state metal complex with molecular oxygen. CONCLUSIONS: These results provide useful practical information for chemists and biochemists who may wish to employ this new cross-linking chemistry for the analysis of protein complexes. They also shed new light on the mechanism of this interesting reaction.  (+info)

Effects of cis-Dichlorudiammineplatinum (II) and related transition metal complexes on Escherichia Coli. (7/370)

A number of transition metal complexes, including the cis and trans isomers of dichlorodiammineplatinum (II), six complexes of rhodium (I), two of iridium (I), and one of ruthenium (II) have been tested for their ability to induce lambda prophage, to produce filamentous growth of Escherichia coli, and to be selectively toxic for strains with defects in the deoxyribonucleic acid repair system. Dichlorotetrakis(dimethylsulfoxide)ruthenium II [RuCl(2) (DMSO)(4)] was strictly similar to cis-dichlorodiammineplatinum II [cis PtCl(2) (NH(3))(2)] in the test for lambda induction, filamentous growth production, and selective toxicity for a recA(-) strain. [Rh COD 1,10-phenanthroline](+) Cl(-), though more toxic for recA(-) than for rec(+)E. coli, was scarcely effective in the test for filamentous growth and did not induce prophage. None of the other tested compounds showed any similarity with cis-PtCl(2)(NH(3))(2). Due to the interesting results obtained with cis-PtCl(2)(NH(3))(2) as an antitumor agent, it seems reasonable to propose RuCl(2)(DMSO)(4) as a potential antitumor substance.  (+info)

Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. (8/370)

We report a flexible strategy for transducing ligand-binding events into electrochemical responses for a wide variety of proteins. The method exploits ligand-mediated hinge-bending motions, intrinsic to the bacterial periplasmic binding protein superfamily, to establish allosterically controlled interactions between electrode surfaces and redox-active, Ru(II)-labeled proteins. This approach allows the development of protein-based bioelectronic interfaces that respond to a diverse set of analytes. Families of these interfaces can be generated either by exploiting natural binding diversity within the superfamily or by reengineering the specificity of individual proteins. These proteins may have numerous medical, environmental, and defense applications.  (+info)