Antinociceptive activity of Melicope ptelefolia ethanolic extract in experimental animals. (33/61)

 (+info)

Lignans and other constituents from aerial parts of Haplophyllum villosum. (34/61)

 (+info)

Phylogeny, evolutionary trends and classification of the Spathelia-Ptaeroxylon clade: morphological and molecular insights. (35/61)

 (+info)

Old-New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome. (36/61)

 (+info)

Two new acridone alkaloids from Glycosmis macrantha. (37/61)

 (+info)

Antioxidant and antinociceptive effects of Citrus limon essential oil in mice. (38/61)

 (+info)

seco-limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. (39/61)

A novel seco-limonoid, rel-(1S,5R,9S,7R,8S,9R,10S,11R,13S,14R,15R,17R)-11,19-dihydroxy-7-acetoxy-7-deoxo ichangin (raputiolide) (1), and two novel quinolone alkaloids N-methyl-2-phenoxyquinolin-4(1H)-one (heptaphyllone A) (2) and 6-methylbenzofuro[2,3-b]quinolin-4(1H)-one (heptaphyllone B) (3), along with the known seco-limonoid ichangin (4), were isolated from Raputia heptaphylla PITTIER (Rutaceae) stem bark. Five known alkaloids, N-methyl-8-methoxyflindersine (5), skimmianine (6), kokusaginine (7), dictamnine (8) and flindersiamine (9), were also isolated from R. heptaphylla leaves. Their structures were established on the basis of full spectroscopic data interpretation supported by data from the pertinent literature. seco-Limonoid 1 configuration was determined by enhanced nuclear Overhauser effect spectroscopy (NOESY) experiments and density functional theory (DFT) molecular modeling. The antileishmanial effect of the isolated compounds was evaluated on Leishmania Viannia panamensis (promastigotes and amastigotes). Whereas alkaloids 2-3, 6-8 and limonoid 4 exhibited no significant parasitocide activity against internalized L. (V.) panamensis amastigotes, limonoid 1 and alkaloid 5 had leishmanicidal activity on intracellular amastigotes (EC(5)(0): 8.7 microg/ml) and promastigotes (EC(50): 14.3 microg/ml), respectively.  (+info)

Inhibitory effects of furanocoumarin derivatives in Kampo extract medicines on P-glycoprotein at the blood-brain barrier. (40/61)

Furanocoumarin derivatives, known as components of grapefruit juice, showing inhibitory effects against P-glycoprotein (P-gp) in the intestine are also contained in the plants of rutaceae and umbelliferae families, which are used as components of Kampo extract medicines. In this study, we investigated the inhibitory effects of byakangelicol and rivulobirin A, known as furanocoumarins showing P-gp inhibitory effect using Caco-2 monolayer, against P-gp at the blood-brain barrier (BBB) under both in vitro and in vivo conditions. First we studied the membrane permeability of furanocoumarins to clarify whether they can be absorbed from the intestine. Both furanocoumarins showed high permeability through the Caco-2 monolayer, suggesting that they can easily reach the systemic circulation after oral administration. Then, we evaluated the effect of these furanocoumarins on the uptake of calcein acetoxymethyl ester (calcein-AM), a P-gp substrate, into bovine brain microvascular endothelial cells (BBMEC). Both furanocoumarins significantly increased the uptake amount of calcein-AM into BBMEC by the inhibition of P-gp at the BBB in vitro. Next we also investigated the P-gp inhibitory effect of these furanocoumarins at the rat BBB in vivo using verapamil as a P-gp substrate. Both furanocoumarins increased the B/P ratio of verapamil compared to the control, even under in vivo conditions; however, the extent of the inhibitory effect was much lower than in vitro condition. In conclusion, byakangelicol and rivulobirin A may inhibit P-gp expressed at the BBB even under in vivo conditions. Further studies using Kampo extract medicines under in vivo condition are necessary for safe drug therapy.  (+info)