Loading...
(1/358) Time-resolved fluorescence investigation of the human immunodeficiency virus type 1 nucleocapsid protein: influence of the binding of nucleic acids.

Depending on the HIV-1 isolate, MN or BH10, the nucleocapsid protein, NCp7, corresponds to a 55- or 71-amino acid length product, respectively. The MN NCp7 contains a single Trp residue at position 37 in the distal zinc finger motif, and the BH10 NCp7 contains an additional Trp, at position 61 in the C-terminal chain. The time-resolved intensity decay parameters of the zinc-saturated BH10 NCp7 were determined and compared to those of single-Trp-containing derivatives. The fluorescence decay of BH10 NCp7 could be clearly represented as a linear combination (with respect to both lifetimes and fractional intensities) of the individual emitting Trp residues. This suggested the absence of interactions between the two Trp residues, a feature that was confirmed by molecular modeling and fluorescence energy transfer studies. In the presence of tRNAPhe, taken as a RNA model, the same conclusions hold true despite the large fluorescence decrease induced by the binding of tRNAPhe. Indeed, the fluorescence of Trp37 appears almost fully quenched, in keeping with a stacking of this residue with the bases of tRNAPhe. Despite the multiple binding sites in tRNAPhe, the large prevalence of ultrashort lifetimes, associated with the stacking of Trp37, suggests that this stacking constitutes a major feature in the binding process of NCp7 to nucleic acids. In contrast, Trp61 only stacked to a small extent with tRNAPhe. The behavior of this residue in the tRNAPhe-NCp7 complexes appeared to be rather heterogeneous, suggesting that it does not constitute a major determinant in the binding process. Finally, our data suggested that the binding of NCp7 proteins from the two HIV-1 strains to nonspecific nucleic acid sequences was largely similar.  (+info)

(2/358) Transfer RNA modification status influences retroviral ribosomal frameshifting.

The possibility of whether tRNAs with and without a highly modified base in their anticodon loop may influence the level of retroviral ribosomal frameshifting was examined. Rabbit reticulocyte lysates were programmed with mRNA encoding UUU or AAC at the frameshift site and the corresponding Phe tRNA with or without the highly modified wyebutoxine (Y) base on the 3' side of its anticodon or Asn tRNA with or without the highly modified queuine (Q) base in the wobble position of its anticodon added. Phe and Asn tRNAs without the Y or Q base, respectively, stimulated the level of frameshifting, suggesting that the frameshift event is influenced by tRNA modification status. In addition, when AAU occurred immediately upstream of UUU as the penultimate frameshift site codon, addition of tRNAAsn without the Q base reduced the stimulatory effect of tRNAPhe without the Y base, whereas addition of tRNAAsn with the Q base did not alter the stimulatory effect. The addition of tRNAAsn without the Q base and tRNAPhe with the Y base inhibited frameshifting. The latter studies suggest an interplay between the tRNAs decoded at the penulimate frameshift and frameshift site codons that is also influenced by tRNA modification status. These data may be intrepreted as indicating that a hypomodified isoacceptor modulates frameshifting in an upward manner when utilized at the frameshift site codon, but modulates frameshifting in a downward manner when utilized at the penultimate frameshift site codon.  (+info)

(3/358) Hybridization of antisense oligonucleotides with the 3'part of tRNA(Phe).

The interaction of antisense oligodeoxyribonucleotides with yeast tRNA(Phe) was investigated. 14-15-mers complementary to the 3'-terminal sequence including the ACCA end bind to the tRNA under physiological conditions. At low oligonucleotide concentrations the binding occurs at the unique complementary site. At higher oligonucleotide concentrations, the second oligonucleotide molecule binds to the complex due to non-perfect duplex formation in the T-loop stabilized by stacking between the two bound oligonucleotides. In these complexes the acceptor stem is open and the 5'-terminal sequence of the tRNA is accessible for binding of a complementary oligonucleotide. The results prove that the efficient binding of oligonucleotides to the 3'-terminal sequence of the tRNA occurs through initial binding to the single-stranded sequence ACCA followed by invasion in the acceptor stem and strand displacement.  (+info)

(4/358) Functional-structural analysis of threonine 25, a residue coordinating the nucleotide-bound magnesium in elongation factor Tu.

Elongation factor (EF) Tu Thr-25 is a key residue binding the essential magnesium complexed to nucleotide. We have characterized mutations at this position to the related Ser and to Ala, which abolishes the bond to Mg2+, and a double mutation, H22Y/T25S. Nucleotide interaction was moderately destabilized in EF-Tu(T25S) but strongly in EF-Tu(T25A) and EF-Tu(H22Y/T25S). Binding Phe-tRNAPhe to poly(U).ribosome needed a higher magnesium concentration for the latter two mutants but was comparable at 10 mM MgCl2. Whereas EF-Tu(T25S) synthesized poly(Phe), as effectively as wild type, the rate was reduced to 50% for EF-Tu(H22Y/T25S) and was, surprisingly, still 10% for EF-Tu(T25A). In contrast, protection of Phe-tRNAPhe against spontaneous hydrolysis by the latter two mutants was very low. The intrinsic GTPase in EF-Tu(H22Y/T25S) and (T25A) was reduced, and the different responses to ribosomes and kirromycin suggest that stimulation by these two agents follows different mechanisms. Of the mutants, only EF-Tu(T25A) forms a more stable complex with EF-Ts than wild type. This implies that stabilization of the EF-Tu.EF-Ts complex is related to the inability to bind Mg2+, rather than to a decreased nucleotide affinity. These results are discussed in the light of the three-dimensional structure. They emphasize the importance of the Thr-25-Mg2+ bond, although its absence is compatible with protein synthesis and thus with an active overall conformation of EF-Tu.  (+info)

(5/358) The uridine in "U-turn": contributions to tRNA-ribosomal binding.

"U-turns" represent an important class of structural motifs in the RNA world, wherein a uridine is involved in an abrupt change in the direction of the polynucleotide backbone. In the crystal structure of yeast tRNAPhe, the invariant uridine at position 33 (U33), adjacent to the anticodon, stabilizes the exemplar U-turn with three non-Watson-Crick interactions: hydrogen bonding of the 2'-OH to N7 of A35 and the N3-H to A36-phosphate, and stacking between C32 and A35-phosphate. The functional importance of each noncanonical interaction was determined by assaying the ribosomal binding affinities of tRNAPhe anticodon stem and loop domains (ASLs) with substitutions at U33. An unsubstituted ASL bound 30S ribosomal subunits with an affinity (Kd = 140+/-50 nM) comparable to that of native yeast tRNAPhe (Kd = 100+/-20 nM). However, the binding affinities of ASLs with dU-33 (no 2'-OH) and C-33 (no N3-H) were significantly reduced (2,930+/-140 nM and 2,190+/-300 nM, respectively). Surprisingly, the ASL with N3-methyluridine-33 (no N3-H) bound ribosomes with a high affinity (Kd = 220+/-20 nM). In contrast, ASLs constructed with position 33 uridine analogs in nonstacking, nonnative, and constrained conformations, dihydrouridine (C2'-endo), 6-methyluridine (syn) and 2'O-methyluridine (C3'-endo) had almost undetectable binding. The inability of ASLs with 6-methyluridine-33 and 2'O-methyluridine-33 to bind ribosomes was not attributable to any thermal instability of the RNAs. These results demonstrate that proton donations by the N3-H and 2'OH groups of U33 are not absolutely required for ribosomal binding. Rather, the results suggest that the overall uridine conformation, including a dynamic (C3'-endo > C2'-endo) sugar pucker, anti conformation, and ability of uracil to stack between C32 and A35-phosphate, are the contributing factors to a functional U-turn.  (+info)

(6/358) Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.

The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformational coupling by induced fit. It is found that two rearrangement steps that limit the chemical reactions of A-site binding, i.e. GTPase activation (preceding GTP hydrolysis) and A-site accommodation (preceding peptide bond formation), are substantially faster for cognate than for near-cognate aa-tRNA. This suggests an induced-fit mechanism of aa-tRNA discrimination on the ribosome that operates in both initial selection and proofreading. It is proposed that the cognate codon-anticodon interaction, more efficiently than the near-cognate one, induces a particular conformation of the decoding center of 16S rRNA, which in turn promotes GTPase activation and A-site accommodation of aa-tRNA, thereby accelerating the chemical steps. As kinetically favored incorporation of the correct substrate has also been suggested for DNA and RNA polymerases, the present findings indicate that induced fit may contribute to the fidelity of template-programed systems in general.  (+info)

(7/358) Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome.

A range of antibiotic inhibitors that act within the peptidyl transferase center of the ribosome were examined for their capacity to perturb the relative positioning of the 3' end of P/P'-site-bound tRNA and the Escherichia coli ribosome. The 3'-terminal adenosines of deacylated tRNA and N-Ac-Phe-tRNA were derivatized at the 2 position with an azido group and the tRNAs were cross-linked to the ribosome on irradiation with ultraviolet light at 365 nm. The cross-links were localized on the rRNA within extended versions of three previously characterized 23S rRNA fragments F1', F2', and F4' at nucleotides C2601/A2602, U2584/U2585 (F1'), U2506 (F2'), and A2062/C2063 (F4'). Each of these nucleotides lies within the peptidyl transferase loop region of the 23S rRNA. Cross-links were also formed with ribosomal proteins L27 (strong) and L33 (weak), as shown earlier. The antibiotics sparsomycin, chloramphenicol, the streptogramins pristinamycin IA and IIA, gougerotin, lincomycin, and spiramycin were tested for their capacity to alter the identities or yields of each of the cross-links. Although no new cross-links were detected, each of the drugs produced major changes in cross-linking yields, mainly decreases, at one or more rRNA sites but, with the exception of chloramphenicol, did not affect cross-linking to the ribosomal proteins. Moreover, the effects were closely similar for both deacylated and N-Ac-Phe-tRNAs, indicating that the drugs selectively perturb the 3' terminus of the tRNA. The strongest decreases in the rRNA cross-links were observed with pristinamycin IIA and chloramphenicol, which correlates with their both producing complex chemical footprints on 23S rRNA within E. coli ribosomes. Furthermore, gougerotin and pristinamycin IA strongly increased the yields of fragments F2' (U2506) and F4' (U2062/C2063), respectively. The results obtained with an RNAse H approach correlate well with primer extension data implying that cross-linking occurs primarily to the bases. Both sets of data are also consistent with the results of earlier rRNA footprinting experiments on antibiotic-ribosome complexes. It is concluded that the antibiotics perturb the relative positioning of the 3' end of the P/P'-site-bound tRNA and the peptidyl transferase loop region of 23S rRNA.  (+info)

(8/358) Structural and functional roles of the N1- and N3-protons of psi at tRNA's position 39.

Pseudouridine at position 39 (Psi(39)) of tRNA's anticodon stem and loop domain (ASL) is highly conserved. To determine the physicochemical contributions of Psi(39)to the ASL and to relate these properties to tRNA function in translation, we synthesized the unmodified yeast tRNA(Phe)ASL and ASLs with various derivatives of U(39)and Psi(39). Psi(39)increased the thermal stability of the ASL (Delta T (m)= 1.3 +/- 0.5 degrees C), but did not significantly affect ribosomal binding ( K (d)= 229 +/- 29 nM) compared to that of the unmodified ASL (K (d)= 197 +/- 58 nM). The ASL-Psi(39)P-site fingerprint on the 30S ribosomal subunit was similar to that of the unmodified ASL. The stability, ribosome binding and fingerprint of the ASL with m(1)Psi(39)were comparable to that of the ASL with Psi(39). Thus, the contribution of Psi(39)to ASL stability is not related to N1-H hydrogen bonding, but probably is due to the nucleoside's ability to improve base stacking compared to U. In contrast, substitutions of m(3)Psi(39), the isosteric m(3)U(39)and m(1)m(3)Psi(39)destabilized the ASL by disrupting the A(31)-U(39)base pair in the stem, as confirmed by NMR. N3-methylations of both U and Psi dramatically decreased ribosomal binding ( K (d)= 1060 +/- 189 to 1283 +/- 258 nM). Thus, canonical base pairing of Psi(39)to A(31)through N3-H is important to structure, stability and ribosome binding, whereas the increased stability and the N1-proton afforded by modification of U(39)to Psi(39)may have biological roles other than tRNA's binding to the ribosomal P-site.  (+info)