Solvation change and ion release during aminoacylation by aminoacyl-tRNA synthetases. (17/100)

Discrimination between cognate and non-cognate tRNAs by aminoacyl-tRNA synthetases occurs at several steps of the aminoacylation pathway. We have measured changes of solvation and counter-ion distribution at various steps of the aminoacylation pathway of glutamyl- and glutaminyl-tRNA synthetases. The decrease in the association constant with increasing KCl concentration is relatively small for cognate tRNA binding when compared to known DNA-protein interactions. The electro-neutral nature of the tRNA binding domain may be largely responsible for this low ion release stoichiometry, suggesting that a relatively large electrostatic component of the DNA-protein interaction free energy may have evolved for other purposes, such as, target search. Little change in solvation upon tRNA binding is seen. Non-cognate tRNA binding actually increases with increasing KCl concentration indicating that charge repulsion may be a significant component of binding free energy. Thus, electrostatic interactions may have been used to discriminate between cognate and non-cognate tRNAs in the binding step. The catalytic constant of glutaminyl-tRNA synthetase increases with increasing osmotic pressure indicating a water release of 8.4 +/- 1.4 mol/mol in the transition state, whereas little change is seen in the case of glutamyl-tRNA synthetase. We propose that the significant amount of water release in the transition state, in the case of glutaminyl-tRNA synthetase, is due to additional contact of the protein with the tRNA in the transition state.  (+info)

Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. (18/100)

Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGlu or both tRNAGlu and tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGlu and one tRNAGln species, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged tRNA(UUG)(Gln). Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGlu isoacceptors and the tRNA(CUG)(Gln) species. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.  (+info)

An archaebacteria-derived glutamyl-tRNA synthetase and tRNA pair for unnatural amino acid mutagenesis of proteins in Escherichia coli. (19/100)

The addition of novel amino acids to the genetic code of Escherichia coli involves the generation of an aminoacyl-tRNA synthetase and tRNA pair that is 'orthogonal', meaning that it functions independently of the synthetases and tRNAs endogenous to E.coli. The amino acid specificity of the orthogonal synthetase is then modified to charge the corresponding orthogonal tRNA with an unnatural amino acid that is subsequently incorporated into a polypeptide in response to a nonsense or missense codon. Here we report the development of an orthogonal glutamic acid synthetase and tRNA pair. The tRNA is derived from the consensus sequence obtained from a multiple sequence alignment of archaeal tRNA(Glu) sequences. The glutamyl-tRNA synthetase is from the achaebacterium Pyrococcus horikoshii. The new orthogonal pair suppresses amber nonsense codons with an efficiency roughly comparable to that of the orthogonal tyrosine pair derived from Methanococcus jannaschii, which has been used to selectively incorporate a variety of unnatural amino acids into proteins in E.coli. Development of the glutamic acid orthogonal pair increases the potential diversity of unnatural amino acid structures that may be incorporated into proteins in E.coli.  (+info)

Nucleolar clustering of dispersed tRNA genes. (20/100)

Early transfer RNA (tRNA) processing events in Saccharomyces cerevisiae are coordinated in the nucleolus, the site normally associated with ribosome biosynthesis. To test whether spatial organization of the tRNA pathway begins with nucleolar clustering of the genes, we have probed the subnuclear location of five different tRNA gene families. The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus. Nucleolar localization requires tRNA gene transcription-complex formation, because inactivation of the promoter at a single locus removes its nucleolar association. This organization of tRNA genes must profoundly affect the spatial packaging of the genome and raises the question of whether gene types might be coordinated in three dimensions to regulate transcription.  (+info)

Novel methyltransferase for modified uridine residues at the wobble position of tRNA. (21/100)

We have identified a novel tRNA methyltransferase in Saccharomyces cerevisiae that we designate Trm9. This enzyme, the product of the YML014w gene, catalyzes the esterification of modified uridine nucleotides, resulting in the formation of 5-methylcarbonylmethyluridine in tRNA(Arg3) and 5-methylcarbonylmethyl-2-thiouridine in tRNA(Glu). In intact yeast cells, disruption of the TRM9 gene results in the complete loss of these modified wobble bases and increased sensitivity at 37 degrees C to paromomycin, a translational inhibitor. These results suggest a role for this potentially reversible methyl esterification reaction when cells are under stress.  (+info)

Is the tRNA ochre suppressor supX derived from gltT? (22/100)

Some of the argE3-->Arg+ revertants show supX suppressor activity. The genetic relationship of supX is not yet known but the evidences are presented, that supX does not derive from gltT encoding tRNA(Glu)UUG.  (+info)

Mitochondrial 3' tRNA editing in the jakobid Seculamonas ecuadoriensis: a novel mechanism and implications for tRNA processing. (23/100)

The jakobid flagellates are bacteriovorus protists with mitochondrial genomes that are the most ancestral identified to date, in that they most resemble the genomes of the alpha-proteobacterial ancestors of the mitochondrion. Because of the bacterial character of jakobid mitochondrial genomes, it was expected that mechanisms for gene expression and RNA structures would be bacterial in nature. However, sequencing of the mitochondrial genome of the jakobid Seculamonas ecuadoriensis revealed several apparent mismatches in the acceptor stems of two predicted tRNAs. To investigate this observation, we determined the cDNA sequences of these tRNAs by RT-PCR. Our results show that the last three positions of the 3' extremity, plus the discriminator position of seryl and glutamyl tRNAs, are altered posttranscriptionally, restoring orthodox base-pairing and replacing the discriminator with an adenosine residue, in an editing process that resembles that of the metazoan Lithobius forficatus. However, the most 5' of the edited nucleotides is occasionally left unedited, indicating that the editing mechanism proceeds initially by exonucleolytic degradation, followed by repair of the degraded region. This 3' tRNA editing mechanism is likely distinct from that of L. forficatus, despite the apparent similarities between the two systems.  (+info)

A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. (24/100)

Escherichia coli encodes YadB, a protein displaying 34% identity with the catalytic core of glutamyl-tRNA synthetase but lacking the anticodon-binding domain. We show that YadB is a tRNA modifying enzyme that evidently glutamylates the queuosine residue, a modified nucleoside at the wobble position of the tRNA(Asp) QUC anticodon. This conclusion is supported by a variety of biochemical data and by the inability of the enzyme to glutamylate tRNA(Asp) isolated from an E.coli tRNA-guanosine transglycosylase minus strain deprived of the capacity to exchange guanosine 34 with queuosine. Structural mimicry between the tRNA(Asp) anticodon stem and the tRNA(Glu) amino acid acceptor stem in prokaryotes encoding YadB proteins indicates that the function of these tRNA modifying enzymes, which we rename glutamyl-Q tRNA(Asp) synthetases, is conserved among prokaryotes.  (+info)