Loading...
(1/7106) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development.

BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  (+info)

(2/7106) In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron.

The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.  (+info)

(3/7106) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation.

The cellular protein p32 was isolated originally as a protein tightly associated with the essential splicing factor ASF/SF2 during its purification from HeLa cells. ASF/SF2 is a member of the SR family of splicing factors, which stimulate constitutive splicing and regulate alternative RNA splicing in a positive or negative fashion, depending on where on the pre-mRNA they bind. Here we present evidence that p32 interacts with ASF/SF2 and SRp30c, another member of the SR protein family. We further show that p32 inhibits ASF/SF2 function as both a splicing enhancer and splicing repressor protein by preventing stable ASF/SF2 interaction with RNA, but p32 does not block SRp30c function. ASF/SF2 is highly phosphorylated in vivo, a modification required for stable RNA binding and protein-protein interaction during spliceosome formation, and this phosphorylation, either through HeLa nuclear extracts or through specific SR protein kinases, is inhibited by p32. Our results suggest that p32 functions as an ASF/SF2 inhibitory factor, regulating ASF/SF2 RNA binding and phosphorylation. These findings place p32 into a new group of proteins that control RNA splicing by sequestering an essential RNA splicing factor into an inhibitory complex.  (+info)

(4/7106) Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.

Group II self-splicing requires the 5' exon to form base pairs with two stretches of intronic sequence (EBS1 and EBS2) which also bind the DNA target during retrotransposition of the intron. We have used dimethyl sulfate modification of bases to obtain footprints of the 5' exon on intron Pl.LSU/2 from the mitochondrion of the alga Pylaiella littoralis, as well as on truncated intron derivatives. Aside from the EBS sites, which are part of the same subdomain (ID) of ribozyme secondary structure, three distant adenines become either less or more sensitive to modification in the presence of the exon. Unexpectedly, one of these adenines in subdomain IC1 is footprinted only in the presence of the distal helix of domain V, which is involved in catalysis. While the loss of that footprint is accompanied by a 100-fold decrease in the affinity for the exon, both protection from modification and efficient binding can be restored by a separate domain V transcript, whose binding results in its own, concise footprint on domains I and III. Possible biological implications of the need for the group II active site to be complete in order to observe high-affinity binding of the 5' exon to domain I are discussed.  (+info)

(5/7106) A premature termination codon interferes with the nuclear function of an exon splicing enhancer in an open reading frame-dependent manner.

Premature translation termination codon (PTC)-mediated effects on nuclear RNA processing have been shown to be associated with a number of human genetic diseases; however, how these PTCs mediate such effects in the nucleus is unclear. A PTC at nucleotide (nt) 2018 that lies adjacent to the 5' element of a bipartite exon splicing enhancer within the NS2-specific exon of minute virus of mice P4 promoter-generated pre-mRNA caused a decrease in the accumulated levels of P4-generated R2 mRNA relative to P4-generated R1 mRNA, although the total accumulated levels of P4 product remained the same. This effect was seen in nuclear RNA and was independent of RNA stability. The 5' and 3' elements of the bipartite NS2-specific exon enhancer are redundant in function, and when the 2018 PTC was combined with a deletion of the 3' enhancer element, the exon was skipped in the majority of the viral P4-generated product. Such exon skipping in response to a PTC, but not a missense mutation at nt 2018, could be suppressed by frame shift mutations in either exon of NS2 which reopened the NS2 open reading frame, as well as by improvement of the upstream intron 3' splice site. These results suggest that a PTC can interfere with the function of an exon splicing enhancer in an open reading frame-dependent manner and that the PTC is recognized in the nucleus.  (+info)

(6/7106) Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements.

We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. beta-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tat pre-mRNA (exons 2 and 3) and immunoglobulin mu-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.  (+info)

(7/7106) Alterations in the conserved SL1 trans-spliced leader of Caenorhabditis elegans demonstrate flexibility in length and sequence requirements in vivo.

Approximately 70% of mRNAs in Caenorhabditis elegans are trans spliced to conserved 21- to 23-nucleotide leader RNAs. While the function of SL1, the major C. elegans trans-spliced leader, is unknown, SL1 RNA, which contains this leader, is essential for embryogenesis. Efforts to characterize in vivo requirements of the SL1 leader sequence have been severely constrained by the essential role of the corresponding DNA sequences in SL1 RNA transcription. We devised a heterologous expression system that circumvents this problem, making it possible to probe the length and sequence requirements of the SL1 leader without interfering with its transcription. We report that expression of SL1 from a U2 snRNA promoter rescues mutants lacking the SL1-encoding genes and that the essential embryonic function of SL1 is retained when approximately one-third of the leader sequence and/or the length of the leader is significantly altered. In contrast, although all mutant SL1 RNAs were well expressed, more severe alterations eliminate this essential embryonic function. The one non-rescuing mutant leader tested was never detected on messages, demonstrating that part of the leader sequence is essential for trans splicing in vivo. Thus, in spite of the high degree of SL1 sequence conservation, its length, primary sequence, and composition are not critical parameters of its essential embryonic function. However, particular nucleotides in the leader are essential for the in vivo function of the SL1 RNA, perhaps for its assembly into a functional snRNP or for the trans-splicing reaction.  (+info)

(8/7106) A novel genetic screen for snRNP assembly factors in yeast identifies a conserved protein, Sad1p, also required for pre-mRNA splicing.

The assembly pathway of spliceosomal snRNPs in yeast is poorly understood. We devised a screen to identify mutations blocking the assembly of newly synthesized U4 snRNA into a functional snRNP. Fifteen mutant strains failing either to accumulate the newly synthesized U4 snRNA or to assemble a U4/U6 particle were identified and categorized into 13 complementation groups. Thirteen previously identified splicing-defective prp mutants were also assayed for U4 snRNP assembly defects. Mutations in the U4/U6 snRNP components Prp3p, Prp4p, and Prp24p led to disassembly of the U4/U6 snRNP particle and degradation of the U6 snRNA, while prp17-1 and prp19-1 strains accumulated free U4 and U6 snRNA. A detailed analysis of a newly identified mutant, the sad1-1 mutant, is presented. In addition to having the snRNP assembly defect, the sad1-1 mutant is severely impaired in splicing at the restrictive temperature: the RP29 pre-mRNA strongly accumulates and splicing-dependent production of beta-galactosidase from reporter constructs is abolished, while extracts prepared from sad1-1 strains fail to splice pre-mRNA substrates in vitro. The sad1-1 mutant is the only splicing-defective mutant analyzed whose mutation preferentially affects assembly of newly synthesized U4 snRNA into the U4/U6 particle. SAD1 encodes a novel protein of 52 kDa which is essential for cell viability. Sad1p localizes to the nucleus and is not stably associated with any of the U snRNAs. Sad1p contains a putative zinc finger and is phylogenetically highly conserved, with homologues identified in human, Caenorhabditis elegans, Arabidospis, and Drosophila.  (+info)