The Trypanosoma brucei spliced leader RNA and rRNA gene promoters have interchangeable TbSNAP50-binding elements. (41/128)

In the protist parasite Trypanosoma brucei, the small nuclear spliced leader (SL) RNA and the large rRNAs are key molecules for mRNA maturation and protein synthesis, respectively. The SL RNA gene (SLRNA) promoter recruits RNA polymerase II and consists of a bipartite upstream sequence element (USE) and an element close to the transcription initiation site. Here, we analyzed the distal part of the ribosomal (RRNA) promoter and identified two sequence blocks which, in reverse orientation, closely resemble the SLRNA USE by both sequence and spacing. A detailed mutational analysis revealed that the ribosomal (r)USE is essential for efficient RRNA transcription in vivo and that it functions in an orientation-dependent manner. Moreover, we showed that USE and rUSE are functionally interchangeable and that rUSE stably interacted with an essential factor of SLRNA transcription. Finally, we demonstrated that the T.brucei homolog of the recently characterized transcription factor p57 of the related organism Leptomonas seymouri specifically bound to USE and rUSE. Since p57 and its T.brucei counterpart are homologous to SNAP50, a component of the human small nuclear RNA gene activation protein complex (SNAPc), both SLRNA and RRNA transcription in T.brucei may depend on a SNAPc-like transcription factor.  (+info)

SmD1 is required for spliced leader RNA biogenesis. (42/128)

The Sm-binding site of the kinetoplastid spliced leader RNA has been implicated in accurate spliced leader RNA maturation and trans-splicing competence. In Trypanosoma brucei, RNA interference-mediated knockdown of SmD1 caused defects in spliced leader RNA maturation, displaying aberrant 3'-end formation, partial formation of cap 4, and overaccumulation in the cytoplasm; U28 pseudouridylation was unaffected.  (+info)

Efficient replication of full-length murine leukemia viruses modified at the dimer initiation site regions. (43/128)

Retroviruses encapsidate two copies of full-length viral RNA molecules linked together as a dimeric genome. RNA stem loop structures harboring palindromic (or "kissing") loop sequences constitute important cis-elements for viral dimerization known as dimer initiation sites (DIS). In murine leukemia virus (MLV), a 10-mer and a 16-mer palindrome (DIS-1 and DIS-2, respectively) located in the viral leader region mediate dimerization in vitro and affect dimer stability of vector RNA in vivo. We have investigated the effect on viral replication of introducing deletions or nucleotide substitutions within these palindromes in a full-length MLV genome. Our results demonstrate that viruses modified at the dimer initiation site regions are viable and show wild-type levels of RNA encapsidation. One mutant lacking the DIS-1 palindrome was severely impaired and displayed an increased cellular ratio of spliced versus genomic RNA that most likely contributes to the inefficient replication. The implications for development of DIS-modified retrovirus-based vectors are discussed.  (+info)

Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. (44/128)

Leishmania and other trypanosomatids are early eukaryotes that possess unusual molecular features, including polycistronic transcription and trans-splicing of pre-mRNAs. The spliced leader RNA (SL RNA) is joined to the 5' end of all mRNAs, thus donating a 5' cap that is characterized by complex modifications. In addition to the conserved m7GTP, linked via a 5'-5'-triphosphate bound to the first nucleoside of the mRNA, the trypanosomatid 5' cap includes 2'-O methylations on the first four ribose moieties and unique base methylations on the first adenine and the fourth uracil, resulting in the cap-4 structure, m7Gpppm3(6,6,2')Apm2'Apm2' Cpm2(3,2')U, as reported elsewhere previously. A library of analogs that mimic the cap structure to different degrees has been synthesized. Their differential affinities to the cap binding proteins make them attractive compounds for studying the molecular basis of cap recognition, and in turn, they may have potential therapeutic significance. The interactions between cap analogs and eIF4E, a cap-binding protein that plays a key role in initiation of translation, can be monitored by measuring intrinsic fluorescence quenching of the tryptophan residues. In the present communication we describe the multistep synthesis of the trypanosomatid cap-4 structure. The 5' terminal mRNA tetranucleotide fragment (pm3(6,6,2')Apm2'Apm2'Cpm2(3,2')U) was synthesized by the phosphoramidite solid phase method. After deprotection and purification, the 5'-phosphorylated tetranucleotide was chemically coupled with m7GDP to yield the cap-4 structure. Biological activity of this newly synthesized compound was confirmed in binding studies with eIF4E from Leishmania that we recently cloned (LeishIF4E-1), using the fluorescence time-synchronized titration method.  (+info)

Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. (45/128)

trans splicing of a spliced-leader RNA (SL RNA) to the 5' ends of mRNAs has been shown to have a limited and sporadic distribution among eukaryotes. Within metazoans, only nematodes are known to process polycistronic pre-mRNAs, produced from operon units of transcription, into mature monocistronic mRNAs via an SL RNA trans-splicing mechanism. Here we demonstrate that a chordate with a highly compact genome, Oikopleura dioica, now joins Caenorhabditis elegans in coupling trans splicing with processing of polycistronic transcipts. We identified a single SL RNA which associates with Sm proteins and has a trimethyl guanosine cap structure reminiscent of spliceosomal snRNPs. The same SL RNA, estimated to be trans-spliced to at least 25% of O. dioica mRNAs, is used for the processing of both isolated or first cistrons and downstream cistrons in a polycistronic precursor. Remarkably, intercistronic regions in O. dioica are far more reduced than those in either nematodes or kinetoplastids, implying minimal cis-regulatory elements for coupling of 3'-end formation and trans splicing.  (+info)

Contribution of trans-splicing, 5' -leader length, cap-poly(A) synergism, and initiation factors to nematode translation in an Ascaris suum embryo cell-free system. (46/128)

Trans-splicing introduces a common 5' 22-nucleotide sequence with an N-2,2,7-trimethylguanosine cap (m (2,2,7)(3)GpppG or TMG-cap) to more than 70% of transcripts in the nematodes Caenorhabditis elegans and Ascaris suum. Using an Ascaris embryo cell-free translation system, we found that the TMG-cap and spliced leader sequence synergistically collaborate to promote efficient translation, whereas addition of either a TMG-cap or spliced leader sequence alone decreased reporter activity. We cloned an A. suum embryo eIF4E homolog and demonstrate that this recombinant protein can bind m(7)G- and TMG-capped mRNAs in cross-linking assays and that binding is enhanced by eIF4G. Both the cap structure and the spliced leader (SL) sequence affect levels of A. suum eIF4E cross-linking to mRNA. Furthermore, the differential binding of eIF4E to a TMG-cap and to trans-spliced and non-trans-spliced RNAs is commensurate with the translational activity of reporter RNAs observed in the cell-free extract. Together, these binding data and translation assays with competitor cap analogs suggest that A. suum eIF4E-3 activity may be sufficient to mediate translation of both trans-spliced and non-trans-spliced mRNAs. Bioinformatic analyses demonstrate the SL sequence tends to trans-splice close to the start codon in a diversity of nematodes. This evolutionary conservation is functionally reflected in the optimal SL to AUG distance for reporter mRNA translation in the cell-free system. Therefore, trans-splicing of the SL1 leader sequence may serve at least two functions in nematodes, generation of an optimal 5'-untranslated region length and a specific sequence context (SL1) for optimal translation of trimethylguanosine capped transcripts.  (+info)

Nematode m7GpppG and m3(2,2,7)GpppG decapping: activities in Ascaris embryos and characterization of C. elegans scavenger DcpS. (47/128)

A spliced leader contributes the mature 5'ends of many mRNAs in trans-splicing organisms. Trans-spliced metazoan mRNAs acquire an m3(2,2,7)GpppN cap from the added spliced leader exon. The presence of these caps, along with the typical m7GpppN cap on non-trans-spliced mRNAs, requires that cellular mRNA cap-binding proteins and mRNA metabolism deal with different cap structures. We have developed and used an in vitro system to examine mRNA degradation and decapping activities in nematode embryo extracts. The predominant pathway of mRNA decay is a 3' to 5' pathway with exoribonuclease degradation of the RNA followed by hydrolysis of resulting mRNA cap by a scavenger (DcpS-like) decapping activity. Direct decapping of mRNA by a Dcp1/Dcp2-like activity does occur, but is approximately 15-fold less active than the 3' to 5' pathway. The DcpS-like activity in nematode embryo extracts hydrolyzes both m7GpppG and m3(2,2,7)GpppG dinucleoside triphosphates. The Dcp1/Dcp2-like activity in extracts also hydrolyzes these two cap structures at the 5' ends of RNAs. Interestingly, recombinant nematode DcpS differs from its human ortholog in its substrate length requirement and in its capacity to hydrolyze m3(2,2,7)GpppG.  (+info)

Functional characterization of a Trypanosoma brucei TATA-binding protein-related factor points to a universal regulator of transcription in trypanosomes. (48/128)

Transcriptional mechanisms remain poorly understood in trypanosomatid protozoa. In particular, there is no knowledge about the function of basal transcription factors, and there is an apparent rarity of promoters for protein-coding genes transcribed by RNA polymerase (Pol) II. Here we describe a Trypanosoma brucei factor related to the TATA-binding protein (TBP). Although this TBP-related factor (TBP-related factor 4 [TRF4]) has about 31% identity to the TBP core domain, several key residues involved in TATA box binding are not conserved. Depletion of the T. brucei TRF4 (TbTRF4) by RNA interference revealed an essential role in RNA Pol I, II, and III transcription. Using chromatin immunoprecipitation, we further showed that TRF4 is recruited to the Pol I-transcribed procyclic acidic repetitive genes, Pol II-transcribed spliced leader RNA genes, and Pol III-transcribed U-snRNA and 7SL RNA genes, thus supporting a role for TbTRF4 in transcription performed by all three nuclear RNA polymerases. Finally, a search for TRF4 binding sites in the T. brucei genome led to the identification of such sites in the 3' portion of certain protein-coding genes, indicating a unique aspect of Pol II transcription in these organisms.  (+info)