(1/876) The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter.

RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.  (+info)

(2/876) Design, characterization and testing of tRNA3Lys-based hammerhead ribozymes.

A hammerhead ribozyme targeted against the HIV-1 env coding region was expressed as part of the anticodon loop of human tRNA3Lys without sacrificing tRNA stability or ribozyme catalytic activity. These tRNA-ribozymes were isolated from a library which was designed to contain linkers (sequences connecting the ribozyme to the anticodon loop) of random sequence and variable length. The ribozyme target site was provided in cis during selection and in trans during subsequent characterization. tRNA-ribozymes that possessed ideal combinations of linkers were expected to recognize the cis target site more freely and undergo cleavage. The cleaved molecules were isolated, cloned and characterized. Active tRNA-ribozymes were identified and the structural features conducive to cleavage were defined. The selected tRNA-ribozymes were stable, possessed cleavage rates lower or similar to the linear hammerhead ribozyme, and could be transcribed by an extract containing RNA polymerase III. Retroviral vectors expressing tRNA-ribozymes were tested in a human CD4+ T cell line and were shown to inhibit HIV-1 replication. These tRNA3Lys-based hammerhead ribozymes should therefore prove to be valuable for both basic and applied research. Special application is sought in HIV-1 or HIV-2 gene therapy.  (+info)

(3/876) A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro.

In this study we identified a novel protein which may contribute to the transcriptional inactivity of Alu retroposons in vivo. A human cDNA clone encoding this protein (ACR1) was isolated from a human expression library using South-western screening with an Alu subfragment, implicated in the regulation of Alu in vitro transcription and interacting with a HeLa nuclear protein down-regulated in adenovirus-infected cells. Bacterially expressed ACR1 is demonstrated to inhibit RNA polymerase III (Pol III)-dependent Alu transcription in vitro but showed no repression of transcription of a tRNA gene or of a reporter gene under control of a Pol II promoter. ACR1 mRNA is also found to be down-regulated in adenovirus-infected HeLa cells, consistent with a possible repressor function of the protein in vivo. ACR1 is mainly (but not exclusively) located in cytoplasm and appears to be a member of a weakly characterized redox protein family having a central, highly conserved sequence motif, PGAFTPXCXXXXLP. One member of the family identified earlier as peroxisomal membrane protein (PMP)20 is known to interact in a sequence-specific manner with a yeast homolog of mammalian cyclosporin-A-binding protein cyclophilin, and mammalian cyclophilin A (an abundant ubiquitously expressed protein) is known to interact with human transcriptional repressor YY1, which is a major sequence-specific Alu-binding protein in human cells. It appears, therefore, that transcriptional silencing of Alu in vivo is a result of complex interactions of many proteins which bind to its Pol III promoter.  (+info)

(4/876) Host genes that affect the target-site distribution of the yeast retrotransposon Ty1.

We report here a simple genetic system for investigating factors affecting Ty1 target-site preference within an RNAP II transcribed gene. The target in this system is a functional fusion of the regulatable MET3 promoter with the URA3 gene. We found that the simultaneous inactivation of Hir3 (a histone transcription regulator) and Cac3 (a subunit of the chromatin assembly factor I), which was previously shown by us to increase the Ty1 transposition rate, eliminated the normally observed bias for Ty1 elements to insert into the 5' vs. 3' regions of the MET3-URA3 and CAN1 genes. The double cac3 hir3 mutation also caused the production of a short transcript from the MET3-URA3 fusion under both repressed and derepressed conditions. In a hir3Delta single-mutant strain, the Ty1 target-site distribution into MET3-URA3 was altered only when transposition occurred while the MET3-URA3 fusion was actively transcribed. In contrast, transcription of the MET3-URA3 fusion did not alter the Ty1 target-site distribution in wild-type or other mutant strains. Deletion of RAD6 was shown to alter the Ty1 target-site preference in the MET3-URA3 fusion and the LYS2 gene. These data, together with previous studies of Ty1 integration positions at CAN1 and SUP4, indicate that the rad6 effect on Ty1 target-site selection is not gene specific.  (+info)

(5/876) Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III.

Mammalian nuclei contain three different RNA polymerases defined by their characteristic locations and drug sensitivities; polymerase I is found in nucleoli, and polymerases II and III in the nucleoplasm. As nascent transcripts made by polymerases I and II are concentrated in discrete sites, the locations of those made by polymerase III were investigated. HeLa cells were lysed with saponin in an improved 'physiological' buffer that preserves transcriptional activity and nuclear ultrastructure; then, engaged polymerases were allowed to extend nascent transcripts in Br-UTP, before the resulting Br-RNA was immunolabelled indirectly with fluorochromes or gold particles. Biochemical analysis showed that approximately 10 000 transcripts were being made by polymerase III at the moment of lysis, while confocal and electron microscopy showed that these transcripts were concentrated in only approximately 2000 sites (diameter approximately 40 nm). Therefore, each site contains approximately five active polymerases. These sites contain specific subunits of polymerase III, but not the hyperphosphorylated form of the largest subunit of polymerase II. The results indicate that the active forms of all three nuclear polymerases are concentrated in their own dedicated transcription sites or 'factories', suggesting that different regions of the nucleus specialize in the transcription of different types of gene.  (+info)

(6/876) RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130.

RNA polymerase III (Pol III) transcription is subject to repression by the retinoblastoma protein RB, both in vitro and in vivo (R. J. White, D. Trouche, K. Martin, S. P. Jackson, and T. Kouzarides, Nature 382:88-90, 1996). This is achieved through a direct interaction between RB and TFIIIB, a multisubunit factor that is required for the expression of all Pol III templates (C. G. C. Larminie, C. A. Cairns, R. Mital, K. Martin, T. Kouzarides, S. P. Jackson, and R. J. White, EMBO J. 16:2061-2071, 1997; W.-M. Chu, Z. Wang, R. G. Roeder, and C. W. Schmid, J. Biol. Chem. 272:14755-14761, 1997). p107 and p130 are two closely related proteins that display 30 to 35% identity with the RB polypeptide and share some of its functions. We show that p107 and p130 can both repress Pol III transcription in transient transfection assays or when added to cell extracts. Pull-down assays and immunoprecipitations using recombinant components demonstrate that a subunit of TFIIIB interacts physically with p107 and p130. In addition, endogenous TFIIIB is shown by cofractionation and coimmunoprecipitation to associate stably with both p107 and p130. Disruption of this interaction in vivo by using the E7 oncoprotein of human papillomavirus results in a marked increase in Pol III transcription. Pol III activity is also deregulated in fibroblasts derived from p107 p130 double knockout mice. We conclude that TFIIIB is targeted for repression not only by RB but also by its relatives p107 and p130.  (+info)

(7/876) Activation of RNA polymerase III transcription in cells transformed by simian virus 40.

RNA polymerase (Pol) III transcription is abnormally active in fibroblasts that have been transformed by simian virus 40 (SV40). This report presents evidence that two separate components of the general Pol III transcription apparatus, TFIIIB and TFIIIC2, are deregulated following SV40 transformation. TFIIIC2 subunits are expressed at abnormally high levels in SV40-transformed cells, an effect which is observed at both protein and mRNA levels. In untransformed fibroblasts, TFIIIB is subject to repression through association with the retinoblastoma protein RB. The interaction between RB and TFIIIB is compromised following SV40 transformation. Furthermore, the large T antigen of SV40 is shown to relieve repression by RB. The E7 oncoprotein of human papillomavirus can also activate Pol III transcription, an effect that is dependent on its ability to bind to RB. The data provide evidence that both TFIIIB and TFIIIC2 are targets for activation by DNA tumor viruses.  (+info)

(8/876) Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III.

Human transcription factor IIIC (hTFIIIC) is a multisubunit complex that mediates transcription of class III genes through direct recognition of promoters (for tRNA and virus-associated RNA genes) or promoter-TFIIIA complexes (for the 5S RNA gene) and subsequent recruitment of TFIIIB and RNA polymerase III. We describe the cognate cDNA cloning and characterization of two subunits (hTFIIIC63 and hTFIIIC102) that are present within a DNA-binding subcomplex (TFIIIC2) of TFIIIC and are related in structure and function to two yeast TFIIIC subunits (yTFIIIC95 and yTFIIIC131) previously shown to interact, respectively, with the promoter (A box) and with a subunit of yeast TFIIIB. hTFIIIC63 and hTFIIIC102 show parallel in vitro interactions with the homologous human TFIIIB and RNA polymerase III components, as well as additional interactions that may facilitate both TFIIIB and RNA polymerase III recruitment. These include novel interactions of hTFIIIC63 with hTFIIIC102, with hTFIIIB90, and with hRPC62, in addition to the hTFIIIC102-hTFIIIB90 and hTFIIIB90-hRPC39 interactions that parallel the previously described interactions in yeast. As reported for yTFIIIC131, hTFIIIC102 contains acidic and basic regions, tetratricopeptide repeats (TPRs), and a helix-loop-helix domain, and mutagenesis studies have implicated the TPRs in interactions both with hTFIIIC63 and with hTFIIIB90. These observations further document conservation from yeast to human of the structure and function of the RNA polymerase III transcription machinery, but in addition, they provide new insights into the function of hTFIIIC and suggest direct involvement in recruitment of both TFIIIB and RNA polymerase III.  (+info)