In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron. (1/4175)

The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.  (+info)

The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. (2/4175)

RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.  (+info)

Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. (3/4175)

Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II is important for basal transcriptional processes in vivo and for cell viability. Several kinases, including certain cyclin-dependent kinases, can phosphorylate this substrate in vitro. It has been proposed that differential CTD phosphorylation by different kinases may regulate distinct transcriptional processes. We have found that two of these kinases, cyclin C/CDK8 and cyclin H/CDK7/p36, can specifically phosphorylate distinct residues in recombinant CTD substrates. This difference in specificity may be largely due to their varying ability to phosphorylate lysine-substituted heptapeptide repeats within the CTD, since they phosphorylate the same residue in CTD consensus heptapeptide repeats. Furthermore, this substrate specificity is reflected in vivo where cyclin C/ CDK8 and cyclin H/CDK7/p36 can differentially phosphorylate an endogenous RNA polymerase II substrate. Several small-molecule kinase inhibitors have different specificities for these related kinases, indicating that these enzymes have diverse active-site conformations. These results suggest that cyclin C/CDK8 and cyclin H/CDK7/p36 are physically distinct enzymes that may have unique roles in transcriptional regulation mediated by their phosphorylation of specific sites on RNA polymerase II.  (+info)

Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. (4/4175)

The form of RNA polymerase II (RNAPII) engaged in transcriptional elongation was isolated. Elongating RNAPII was associated with a novel multisubunit complex, termed elongator, whose stable interaction was dependent on a hyperphosphorylated state of the RNAPII carboxy-terminal domain (CTD). A free form of elongator was also isolated, demonstrating the discrete nature of the complex, and free elongator could bind directly to RNAPII. The gene encoding the largest subunit of elongator, ELP1, was cloned. Phenotypes of yeast elp1 delta cells demonstrated an involvement of elongator in transcriptional elongation as well as activation in vivo. Our data indicate that the transition from transcriptional initiation to elongation involves an exchange of the multiprotein mediator complex for elongator in a reaction coupled to CTD hyperphosphorylation.  (+info)

Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. (5/4175)

Human immunodeficiency virus, type 1 (HIV-1) Tat protein activates transcription from the HIV-1 long terminal repeat. Tat interacts with TFIIH and Tat-associated kinase (a transcription elongation factor P-TEFb) and requires the carboxyl-terminal domain of the largest subunit of RNA polymerase II (pol II) for transactivation. We developed a stepwise RNA pol II walking approach and used Western blotting to determine the role of TFIIH and P-TEFb in HIV-1 transcription elongation. Our results demonstrate the new findings that P-TEFb is a component of the preinitiation complex and travels with the elongating RNA pol II, whereas TFIIH is released from the elongation complexes before the trans-activation responsive region RNA is synthesized. Our results suggest that TFIIH and P-TEFb are involved in the clearance of promoter-proximal pausing of RNA pol II on the HIV-1 long terminal repeat at different stages.  (+info)

Human immunodeficiency virus type 1 Tat-dependent activation of an arrested RNA polymerase II elongation complex. (6/4175)

The human immunodeficiency virus type 1 (HIV-1) Tat protein is a transcriptional activator that is essential for efficient viral gene expression and replication. Tat increases the level of full-length transcripts from the HIV-1 promoter by dramatically enhancing the elongation efficiency of the RNA polymerase II complexes assembled on this promoter. Tat could potentially activate the transcription machinery during initiation, elongation, or both. We used an immobilized HIV-1 promoter template with a reversible lac repressor (LacR) elongation block inserted downstream to dissect the stages in transcription affected by Tat. Transcription complexes assembled in the absence of Tat and blocked by LacR cannot be activated by incubation with Tat alone. These complexes can, however, be activated if Tat is added in combination with cellular factors. In this system, Tat also promoted the assembly of preinitiation complexes capable of elongating efficiently, suggesting that Tat can associate with transcription complex at an early stage. These data indicate that Tat can activate elongation of RNA polymerase by modifying an already elongating transcription complex. The data also suggest the possibility that Tat can interact with initiation complexes.  (+info)

Multiple layers of cooperativity regulate enhanceosome-responsive RNA polymerase II transcription complex assembly. (7/4175)

Two coordinate forms of transcriptional synergy mediate eukaryotic gene regulation: the greater-than-additive transcriptional response to multiple promoter-bound activators, and the sigmoidal response to increasing activator concentration. The mechanism underlying the sigmoidal response has not been elucidated but is almost certainly founded on the cooperative binding of activators and the general machinery to DNA. Here we explore that mechanism by using highly purified transcription factor preparations and a strong Epstein-Barr virus promoter, BHLF-1, regulated by the virally encoded activator ZEBRA. We demonstrate that two layers of cooperative binding govern transcription complex assembly. First, the architectural proteins HMG-1 and -2 mediate cooperative formation of an enhanceosome containing ZEBRA and cellular Sp1. This enhanceosome then recruits transcription factor IIA (TFIIA) and TFIID to the promoter to form the DA complex. The DA complex, however, stimulates assembly of the enhanceosome itself such that the entire reaction can occur in a highly concerted manner. The data reveal the importance of reciprocal cooperative interactions among activators and the general machinery in eukaryotic gene regulation.  (+info)

Rpb7 can interact with RNA polymerase II and support transcription during some stresses independently of Rpb4. (8/4175)

Rpb4 and Rpb7 are two yeast RNA polymerase II (Pol II) subunits whose mechanistic roles have recently started to be deciphered. Although previous data suggest that Rpb7 can stably interact with Pol II only as a heterodimer with Rpb4, RPB7 is essential for viability, whereas RPB4 is essential only during some stress conditions. To resolve this discrepancy and to gain a better understanding of the mode of action of Rpb4, we took advantage of the inability of cells lacking RPB4 (rpb4Delta, containing Pol IIDelta4) to grow above 30 degrees C and screened for genes whose overexpression could suppress this defect. We thus discovered that overexpression of RPB7 could suppress the inability of rpb4Delta cells to grow at 34 degrees C (a relatively mild temperature stress) but not at higher temperatures. Overexpression of RPB7 could also partially suppress the cold sensitivity of rpb4Delta strains and fully suppress their inability to survive a long starvation period (stationary phase). Notably, however, overexpression of RPB4 could not override the requirement for RPB7. Consistent with the growth phenotype, overexpression of RPB7 could suppress the transcriptional defect characteristic of rpb4Delta cells during the mild, but not during a more severe, heat shock. We also demonstrated, through two reciprocal coimmunoprecipitation experiments, a stable interaction of the overproduced Rpb7 with Pol IIDelta4. Nevertheless, fewer Rpb7 molecules interacted with Pol IIDelta4 than with wild-type Pol II. Thus, a major role of Rpb4 is to augment the interaction of Rpb7 with Pol II. We suggest that Pol IIDelta4 contains a small amount of Rpb7 that is sufficient to support transcription only under nonstress conditions. When RPB7 is overexpressed, more Rpb7 assembles with Pol IIDelta4, enough to permit appropriate transcription also under some stress conditions.  (+info)