Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. (73/17357)

RNA silencing or post-transcriptional gene silencing (PTGS) in plants is known as a defense system against virus infection. Several plant viruses have been shown to encode an RNA silencing suppressor. Using a green fluorescent protein-based transient suppression assay, we show that NSs protein of Tomato spotted wilt virus (TSWV) has RNA silencing suppressor activity. TSWV NSs protein suppressed sense transgene-induced PTGS but did not suppress inverted repeat transgene-induced PTGS. TSWV NSs protein is the first RNA silencing suppressor identified in negative-strand RNA viruses.  (+info)

Small interfering RNA and gene silencing in transgenic mice and rats. (74/17357)

After short duplexes of synthetic 21-23 nt RNAs (siRNA) were reported to be effective in silencing specific genes, a vector-based approach for siRNAs was demonstrated in mammalian cultured cell lines. However, the effect of RNA interference (RNAi) on various differentiated cells in live animals remains unknown. In this report, we demonstrate that transgenically supplied siRNA can silence ubiquitously expressed enhanced green fluorescent protein in every part of the mouse and rat body. These results suggest that transgenic RNAi could function as an alternative method of gene silencing by applying homologous recombination to embryonic stem (ES) cells, and should be successful even in species where ES cell lines remain unestablished.  (+info)

Inhibition of excess nodal signaling during mouse gastrulation by the transcriptional corepressor DRAP1. (75/17357)

The formation and patterning of mesoderm during mammalian gastrulation require the activity of Nodal, a secreted mesoderm-inducing factor of the transforming growth factor-beta (TGF-beta) family. Here we show that the transcriptional corepressor DRAP1 has a very specific role in regulation of Nodal activity during mouse embryogenesis. We find that loss of Drap1 leads to severe gastrulation defects that are consistent with increased expression of Nodal and can be partially suppressed by Nodal heterozygosity. Biochemical studies indicate that DRAP1 interacts with and inhibits DNA binding by the winged-helix transcription factor FoxH1 (FAST), a critical component of a positive feedback loop for Nodal activity. We propose that DRAP1 limits the spread of a morphogenetic signal by down-modulating the response to the Nodal autoregulatory loop.  (+info)

Rates of behavior and aging specified by mitochondrial function during development. (76/17357)

To explore the role of mitochondrial activity in the aging process, we have lowered the activity of the electron transport chain and adenosine 5'-triphosphate (ATP) synthase with RNA interference (RNAi) in Caenorhabditis elegans. These perturbations reduced body size and behavioral rates and extended adult life-span. Restoring messenger RNA to near-normal levels during adulthood did not elevate ATP levels and did not correct any of these phenotypes. Conversely, inhibiting respiratory-chain components during adulthood only did not reset behavioral rates and did not affect life-span. Thus, the developing animal appears to contain a regulatory system that monitors mitochondrial activity early in life and, in response, establishes rates of respiration, behavior, and aging that persist during adulthood.  (+info)

Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. (77/17357)

Endothelial cell migration is an essential step in vasculogenesis and angiogenesis, in which receptor tyrosine kinases play a pivotal role. We investigated the mechanism by which ephrin-B1 promotes membrane ruffling in human aortic endothelial cells, because membrane ruffling heralds cell body migration. We especially focused on the role of Crk adaptor protein in EphB-mediated signaling. Using DsRed-tagged Crk and a fluorescent time-lapse microscope, we showed that Crk was recruited to the nascent focal complex after ephrin-B1 stimulation. Furthermore, we found that p130(Cas), but not paxillin, recruited Crk to the nascent focal complex. The necessity of Crk in ephrin-B1-induced membrane ruffling was shown both by the overexpression of dominant negative Crk mutants and by the depletion of Crk by using RNA interference. Then, we examined the role of two major downstream molecules of Crk, Rac1 and Rap1. The dominant negative mutant of Rac1 completely inhibited ephrin-B1-induced membrane ruffling and focal complex assembly. In contrast, rap1GAPII, a negative regulator of Rap1, did not inhibit ephrin-B1-induced membrane ruffling. However, in rap1GAPII-expressing cells, ephrin-B1 did not induce membrane spreading, probably due to instability of the focal complex. These results indicated that Crk plays a critical role in Rac1-induced membrane ruffling and Rap1-mediated nascent focal complex stabilization contributing to ephrin-B1-induced human aortic endothelial cells migration.  (+info)

Ran GTPase cycle and importins alpha and beta are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. (78/17357)

The small GTPase Ran has been found to play pivotal roles in several aspects of cell function. We have investigated the role of the Ran GTPase cycle in spindle formation and nuclear envelope assembly in dividing Caenorhabditis elegans embryos in real time. We found that Ran and its cofactors RanBP2, RanGAP, and RCC1 are all essential for reformation of the nuclear envelope after cell division. Reducing the expression of any of these components of the Ran GTPase cycle by RNAi leads to strong extranuclear clustering of integral nuclear envelope proteins and nucleoporins. Ran, RanBP2, and RanGAP are also required for building a mitotic spindle, whereas astral microtubules are normal in the absence of these proteins. RCC1(RNAi) embryos have similar abnormalities in the initial phase of spindle formation but eventually recover to form a bipolar spindle. Irregular chromatin structures and chromatin bridges due to spindle failure were frequently observed in embryos where the Ran cycle was perturbed. In addition, connection between the centrosomes and the male pronucleus, and thus centrosome positioning, depends upon the Ran cycle components. Finally, we have demonstrated that both IMA-2 and IMB-1, the homologues of vertebrate importin alpha and beta, are essential for both spindle assembly and nuclear formation in early embryos.  (+info)

An internally located RNA hairpin enhances replication of Tomato bushy stunt virus RNAs. (79/17357)

Defective interfering (DI) RNAs of Tomato bushy stunt virus (TBSV), a plus-sense RNA virus, comprise four conserved noncontiguous regions (I through IV) derived from the viral genome. Region III, a 70-nucleotide-long sequence corresponding to a genomic segment located 378 nucleotides upstream of the 3' terminus of the genome, has been found to enhance DI RNA accumulation by approximately 10-fold in an orientation-independent manner (D. Ray and K. A. White, Virology 256:162-171, 1999). In this study, a more detailed structure-function analysis of region III was conducted. RNA secondary-structure analyses indicated that region III contains stem-loop structures in both plus and minus strands. Through deletion analyses of a DI RNA, a primary determinant of region III activity was mapped to the 5'-proximal 35-nucleotide segment. Compensatory-type mutational analyses showed that a stem-loop structure in the minus strand of this subregion was required for enhanced DI RNA replication. The same stem-loop structure was also found to function in a position-independent manner in a DI RNA (albeit at reduced levels) and to be important for efficient accumulation within the context of the TBSV genome. Taken together, these observations suggest that the 5'-proximal segment of region III is a modular RNA replication element that functions primarily through the formation of an RNA hairpin structure in the minus strand.  (+info)

The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. (80/17357)

Posttranscriptional gene silencing (PTGS), or RNA silencing, is a sequence-specific RNA degradation process that targets foreign RNA, including viral and transposon RNA for destruction. Several RNA plant viruses have been shown to encode suppressors of PTGS in order to survive this host defense. We report here that the coat protein (CP) of Turnip crinkle virus (TCV) strongly suppresses PTGS. The Agrobacterium infiltration system was used to demonstrate that TCV CP suppressed the local PTGS as strongly as several previously reported virus-coded suppressors and that the action of TCV CP eliminated the small interfering RNAs associated with PTGS. We have also shown that the TCV CP must be present at the time of silencing initiation to be an effective suppressor. TCV CP was able to suppress PTGS induced by sense, antisense, and double-stranded RNAs, and it prevented systemic silencing. These data suggest that TCV CP functions to suppress RNA silencing at an early initiation step, likely by interfering the function of the Dicer-like RNase in plants.  (+info)