Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. (1/17357)

Isovaleric acidemia (IVA) is a recessive disorder caused by a deficiency of isovaleryl-CoA dehydrogenase (IVD). We have reported elsewhere nine point mutations in the IVD gene in fibroblasts of patients with IVA, which lead to abnormalities in IVD protein processing and activity. In this report, we describe eight IVD gene mutations identified in seven IVA patients that result in abnormal splicing of IVD RNA. Four mutations in the coding region lead to aberrantly spliced mRNA species in patient fibroblasts. Three of these are amino acid altering point mutations, whereas one is a single-base insertion that leads to a shift in the reading frame of the mRNA. Two of the coding mutations strengthen pre-existing cryptic splice acceptors adjacent to the natural splice junctions and apparently interfere with exon recognition, resulting in exon skipping. This mechanism for missplicing has not been reported elsewhere. Four other mutations alter either the conserved gt or ag dinucleotide splice sites in the IVD gene. Exon skipping and cryptic splicing were confirmed by transfection of these mutations into a Cos-7 cell line model splicing system. Several of the mutations were predicted by individual information analysis to inactivate or significantly weaken adjacent donor or acceptor sites. The high frequency of splicing mutations identified in these patients is unusual, as is the finding of missplicing associated with missense mutations in exons. These results may lead to a better understanding of the phenotypic complexity of IVA, as well as provide insight into those factors important in defining intron/exon boundaries in vivo.  (+info)

Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference. (2/17357)

BACKGROUND: Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium falciparum, not yet identified at the molecular level. RESULTS: We have identified a PP1 catalytic subunit from P. falciparum and named it PfPP1. The predicted primary structure of the 304-amino acid long protein was highly similar to PP1 sequences of other species, and showed conservation of all the signature motifs. The purified recombinant protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase inhibitors was characteristic of the PP1 class. The authenticity of the PfPP1 cDNA was further confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein was expressed in all erythrocytic stages of the parasite. Abrogation of PP1 expression by synthetic short interfering RNA (siRNA) led to inhibition of parasite DNA synthesis. CONCLUSIONS: The high sequence similarity of PfPP1 with other PP1 members suggests conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential role in the parasite. Detailed studies of PfPP1 and its regulation may unravel the role of reversible protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and parasitic cell division. The use of siRNA could be an important tool in the functional analysis of Apicomplexan genes.  (+info)

Frequent germline mutations and somatic repeat instability in DNA mismatch-repair-deficient Caenorhabditis elegans. (3/17357)

Mismatch-repair-deficient mutants were initially recognized as mutation-prone derivatives of bacteria, and later mismatch repair deficiency was found to predispose humans to colon cancers (HNPCC). We generated mismatch-repair-deficient Caenorhabditis elegans by deleting the msh-6 gene and analyzed the fidelity of transmission of genetic information to subsequent generations. msh-6-defective animals show an elevated level of spontaneous mutants in both the male and female germline; also repeated DNA tracts are unstable. To monitor DNA repeat instability in somatic tissue, we developed a sensitive system, making use of heat-shock promoter-driven lacZ transgenes, but with a repeat that puts this reporter gene out of frame. In genetic msh-6-deficient animals lacZ+ patches are observed as a result of somatic repeat instability. RNA interference by feeding wild-type animals dsRNA homologous to msh-2 or msh-6 also resulted in somatic DNA instability, as well as in germline mutagenesis, indicating that one can use C. elegans as a model system to discover genes involved in maintaining DNA stability by large-scale RNAi screens.  (+info)

The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. (4/17357)

In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos, only the spindle-associated cyclin B is degraded at the end of mitosis. The anaphase promoting complex/cyclosome (APC/C) targets cyclin B for destruction, but its subcellular localisation remains controversial. We constructed GFP fusions of two core APC/C subunits, Cdc16 and Cdc27. These fusion proteins were incorporated into the endogenous APC/C and were largely localised in the cytoplasm during interphase in living syncytial embryos. Both fusion proteins rapidly accumulated in the nucleus prior to nuclear envelope breakdown but only weakly associated with mitotic spindles throughout mitosis. Thus, the global activation of a spatially restricted APC/C cannot explain the spatially regulated destruction of cyclin B. Instead, different subpopulations of the APC/C must be activated at different times to degrade cyclin B. Surprisingly, we noticed that GFP-Cdc27 associated with mitotic chromosomes, whereas GFP-Cdc16 did not. Moreover, reducing the levels of Cdc16 or Cdc27 by >90% in tissue culture cells led to a transient mitotic arrest that was both biochemically and morphologically distinct. Taken together, our results raise the intriguing possibility that there could be multiple forms of the APC/C that are differentially localised and perform distinct functions.  (+info)

A novel linker histone-like protein is associated with cytoplasmic filaments in Caenorhabditis elegans. (5/17357)

The histone H1 complement of Caenorhabditis elegans contains a single unusual protein, H1.X. Although H1.X possesses the globular domain and the canonical three-domain structure of linker histones, the amino acid composition of H1.X is distinctly different from conventional linker histones in both terminal domains. We have characterized H1.X in C. elegans by antibody labeling, green fluorescent protein fusion protein expression and RNA interference. Unlike normal linker histones, H1.X is a cytoplasmic as well as a nuclear protein and is not associated with chromosomes. H1.X is most prominently expressed in the marginal cells of the pharynx and is associated with a peculiar cytoplasmic cytoskeletal structure therein, the tonofilaments. Additionally H1.X::GFP is expressed in the cytoplasm of body and vulva muscle cells, neurons, excretory cells and in the nucleoli of embryonic blastomeres and adult gut cells. RNA interference with H1.X results in uncoordinated and egg laying defective animals, as well as in a longitudinally enlarged pharynx. These phenotypes indicate a cytoplasmic role of H1.X in muscle growth and muscle function.  (+info)

Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes. (6/17357)

Cathepsin B, a marker of the dedifferentiated chondrocyte phenotype, contributes to cartilage destruction in osteoarthritis and pathological proteolysis in rheumatoid arthritis and cancer. In search of possible means for neutralizing the action of this enzyme, we compared its expression, biosynthesis and distribution in articular chondrocytes and two lines of immortalized human chondrocytes. Native articular chondrocytes in primary culture and the polyclonal T/C-28a2 chondrocyte cell line were similar with respect to the number of endosomes and lysosomes, the distribution of three alternatively spliced cathepsin B mRNA forms, and the cathepsin B activity. In contrast, the clonal C-28/I2 cell line contained four times higher levels of intracellular cathepsin B activity, slightly higher numbers of endosomes and lysosomes, and uniform distribution of all three cathepsin B transcripts and thus resembled subcultured chondrocytes at an early stage of dedifferentiation. Transfection of T/C-28a2 chondrocytes with double-stranded cathepsin B mRNA resulted in inhibition of cathepsin B biosynthesis by up to 70% due to RNA interference, and single-stranded antisense DNAs of various sizes decreased cathepsin B biosynthesis by up to 78%. An antisense oligonucleotide designed to hybridize to the end of cathepsin B's exons 1 and the beginning of exon 3 was successful in specifically inhibiting the mRNA splice variant lacking exon 2. These results indicate that cathepsin B expression and activity may be targeted for gene silencing by RNA interference and antisense DNA in chondrocytes. Furthermore, the differential expression and distribution of cathepsin B and presence of the necessary molecular apparatus for gene silencing in the immortalized human chondrocyte cell lines indicate that they may serve as a useful model for studying the function of relevant enzymes in cartilage pathologies.  (+info)

Inscuteable-independent apicobasally oriented asymmetric divisions in the Drosophila embryonic CNS. (7/17357)

Inscuteable is the founding member of a protein complex localised to the apical cortex of Drosophila neural progenitors that controls their asymmetric division. Aspects of asymmetric divisions of all identified apicobasally oriented neural progenitors characterised to date, in both the central and peripheral nervous systems, require inscuteable. Here we examine the generality of this requirement. We show that many identified neuroblast lineages, in fact, do not require inscuteable for normal morphological development. To elucidate the requirements for apicobasal asymmetric divisions in a context where inscuteable is not essential, we focused on the MP2 > dMP2 + vMP2 division. We show that for MP2 divisions, asymmetric localisation and segregation of Numb and the specification of distinct dMP2 and vMP2 identities require bazooka but not inscuteable. We conclude that inscuteable is not required for all apicobasally oriented asymmetric divisions and that, in some cellular contexts, bazooka can mediate apicobasal asymmetric divisions without inscuteable.  (+info)

Requirements of high levels of Hedgehog signaling activity for medial-region cell fate determination in Drosophila legs: identification of pxb, a putative Hedgehog signaling attenuator gene repressed along the anterior-posterior compartment boundary. (8/17357)

We show that high levels of Hedgehog signaling activity are essential for medial-region patterning in Drosophila legs. In mid-to-late third instar leg discs, high levels of Hedgehog signals repress the transcription of pxb, a newly identified gene encoding a transmembrane protein expressed specifically in the anterior compartment. Misexpression experiments indicate that Pxb may serve as a Hedgehog signaling attenuator capable of acting prior to Hedgehog-Patched interactions, suggesting that Hedgehog signaling in leg discs includes a pxb-repression-mediated positive feedback loop. RNA interference and clonal analysis show that neither Wingless nor Decapentaplegic signaling is required for pxb repression but high levels of Wingless signaling activity are essential for patterning in the leg ventral medial region.  (+info)