Visinin-like protein (VILIP) is a neuron-specific calcium-dependent double-stranded RNA-binding protein. (41/2793)

Double-stranded RNA-binding proteins function in regulating the stability, translation, and localization of specific mRNAs. In this study, we have demonstrated that the neuron-specific, calcium-binding protein, visinin-like protein (VILIP) contains one double-stranded RNA-binding domain, a protein motif conserved among many double-stranded RNA-binding proteins. We showed that VILIP can specifically bind double-stranded RNA, and this interaction specifically requires the presence of calcium. Mobility shift studies indicated that VILIP binds double-stranded RNA as a single protein-RNA complex with an apparent equilibrium dissociation constant of 9.0 x 10(-6) M. To our knowledge, VILIP is the first double-stranded RNA-binding protein shown to be calcium-dependent. Furthermore, VILIP specifically binds the 3'-untranslated region of the neurotrophin receptor, trkB, an mRNA localized to hippocampal dendrites in an activity-dependent manner. Given that VILIP is also expressed in the hippocampus, these data suggest that VILIP may employ a novel, calcium-dependent mechanism to regulate its binding to important localized mRNAs in the central nervous system.  (+info)

The rde-1 gene, RNA interference, and transposon silencing in C. elegans. (42/2793)

Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.  (+info)

Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. (43/2793)

While all known natural isolates of C. elegans contain multiple copies of the Tc1 transposon, which are active in the soma, Tc1 transposition is fully silenced in the germline of many strains. We mutagenized one such silenced strain and isolated mutants in which Tc1 had been activated in the germline ("mutators"). Interestingly, many other transposons of unrelated sequence had also become active. Most of these mutants are resistant to RNA interference (RNAi). We found one of the mutated genes, mut-7, to encode a protein with homology to RNaseD. This provides support for the notion that RNAi works by dsRNA-directed, enzymatic RNA degradation. We propose a model in which MUT-7, guided by transposon-derived dsRNA, represses transposition by degrading transposon-specific messengers, thus preventing transposase production and transposition.  (+info)

Translational control by the La antigen. Structure requirements for rescue of the double-stranded RNA-mediated inhibition of protein synthesis. (44/2793)

The La antigen is a protein which can bind both single-stranded and double-stranded forms of RNA and has regulatory effects on gene expression at the levels of transcription and translation. It was previously shown to inhibit the activation of the dsRNA-dependent protein kinase PKR by sequestering and/or unwinding double-stranded RNA. Here, we demonstrate that, as predicted by these properties, the La antigen can rescue protein synthesis in the reticulocyte lysate system from inhibition by low concentrations of dsRNA. This effect is reversed by higher concentrations of dsRNA. Using a series of deletion mutants we have investigated the structural features of the La antigen that are required for these effects. The ability to bind dsRNA is influenced by regions within both the previously characterized N-terminal RNP motif and the C-terminal half of the protein. La mutants with either N-terminal or C-terminal deletions retain the ability to inhibit the protein kinase activity of PKR and to rescue protein synthesis from inhibition by dsRNA. It is notable that sequences in the C-terminal half of the La antigen, including a phosphorylation site at Ser366, which are needed for other regulatory effects of the protein on gene expression are dispensable for the effects of La on PKR. We suggest that La regulates PKR activity solely as a result of its ability to act as an RNA-binding protein that can compete with PKR for limiting amounts of dsRNA.  (+info)

Open reading frame in rotavirus mRNA specifically promotes synthesis of double-stranded RNA: template size also affects replication efficiency. (45/2793)

The 11 rotavirus mRNAs are capped, but not polyadenylated, have a high AU content, and serve as templates for the synthesis of double-stranded (ds)RNA. Earlier studies using a cell-free replication system showed that the 5'- and 3'-untranslated regions (UTRs) of the mRNAs have cis-acting signals that promote minus-strand synthesis. To identify additional factors that affect RNA replication, chimeric RNAs were made that consisted of portions of the gene 8 mRNA of SA11 rotavirus and of the gene for green fluorescent protein (gfp) or for the N protein of respiratory syncytial virus. Analysis of the chimeras in the cell-free replication system under noncompetitive conditions showed that the open reading frame (ORF) of viral mRNAs contains information that specifically promotes minus-strand synthesis. Results were also obtained indicating that a high AU content may increase the replication efficiency of RNAs and that, in general, an inverse correlation exists between replication efficiency and the length of the RNA template. Replication assays performed under competitive conditions showed that nonviral RNAs can interfere significantly with the replication of viral mRNAs, mostly likely by sequestering nonspecific RNA-binding proteins that are of limited concentration in the replication system and that are essential for dsRNA synthesis. In summary, rotavirus dsRNA synthesis is affected by many factors including cis-acting replication signals located in the 5'-UTR, 3'-UTR, and ORF of the mRNA as well as the size and possibly the AU content of the mRNA.  (+info)

PKR; a sentinel kinase for cellular stress. (46/2793)

The double stranded RNA (dsRNA)-activated protein kinase PKR is a ubiquitously expressed serine/threonine protein kinase that is induced by interferon and activated by dsRNA, cytokine, growth factor and stress signals. It is essential for cells to respond adequately to different stresses including growth factor deprivation, products of the inflammatory response (TNF) and bacterial (lipopolysaccharide) and viral (dsRNA) products. As a vital component of the cellular antiviral response pathway, PKR is autophosphorylated and activated on binding to dsRNA. This results in inhibition of protein synthesis via the phosphorylation of eIF2alpha and also induces transcription of inflammatory genes by PKR-dependent signaling of the activation of different transcription factors. Along with RNaseL, PKR constitutes the antiviral arm of a group of mammalian stress response proteins that have counterparts in yeast. What began as adaptation to amino acid deprivation and sensing unfolded proteins in the endoplasmic reticulum has evolved into a family of sophisticated mammalian stress response proteins able to mediate cellular responses to both physical and biological stress.  (+info)

Baculovirus stimulates antiviral effects in mammalian cells. (47/2793)

Herein, we report that Autographa californica nucleopolyhedrovirus, a member of the Baculoviridae family, is capable of stimulating antiviral activity in mammalian cells. Baculoviruses are not pathogenic to mammalian cells. Nevertheless, live baculovirus is shown here to induce interferons (IFN) from murine and human cell lines and induces in vivo protection of mice from encephalomyocarditis virus infection. Monoclonal antibodies specific for the baculovirus envelope gp67 neutralize baculovirus-dependent IFN production. Moreover, UV treatment of baculovirus eliminates both infectivity and IFN-inducing activity. In contrast, the IFN-inducing activity of the baculovirus was unaffected by DNase or RNase treatment. These data demonstrate that IFN production can be induced in mammalian cells by baculovirus even though the cells fail to serve as a natural host for an active viral infection. Baculoviruses, therefore, provide a novel model in which to study at least one alternative mechanism for IFN induction in mammalian cells.  (+info)

Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution. (48/2793)

Enterovirus infection and persistence have been implicated in the pathogenesis of certain chronic muscle diseases. In vitro studies suggest that persistent enteroviruses mutate, evolving into forms that are less lytic and display altered tropism, but it is less clear whether these mechanisms operate in vivo. In this study, persistent coxsackievirus RNA from the muscle of mice afflicted with chronic inflammatory myopathy (CIM) was characterized and compared with RNA from a virus that had established a persistent infection of G8 mouse myoblasts for 30 passages in vitro. Competitive strand-specific reverse transcription-PCR and susceptibility to RNase I treatment revealed that plus- and minus-strand viral RNAs were present at nearly equivalent levels in muscle and that they persisted in a double-stranded conformation. All regions of the viral genome persisted and were amplified as a series of seven overlapping fragments. Restriction endonuclease fingerprinting coupled with sequencing indicated that there was no evolution of the viral genome associated with its persistence in muscle. This contrasted with the productive persistent infection that was established in myoblast cultures, where plus-strand RNA predominated and persistent virus developed distinct mutations. In vitro persistence proceeded by a carrier culture mechanism and was completely dependent on production of infectious virus, since persistent viral RNA was not detected in cultures subjected to antibody-mediated curing. These experiments demonstrate that persistence of coxsackievirus RNA in muscle is not facilitated by distinct genetic changes in the virus that give rise to replication-defective forms but occurs primarily through production of stable double-stranded RNA that is produced as the acute viral infection resolves. The data suggest a mechanism for coxsackievirus persistence in myofibers and perhaps other nondividing cells whereby cells that survive infection could harbor persistent viral RNA for extended times without producing detectable levels of infectious virus.  (+info)