Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. (1/2793)

Staufen (Stau) is a double-stranded RNA (dsRNA)-binding protein involved in mRNA transport and localization in Drosophila. To understand the molecular mechanisms of mRNA transport in mammals, we cloned human (hStau) and mouse (mStau) staufen cDNAs. In humans, four transcripts arise by differential splicing of the Stau gene and code for two proteins with different N-terminal extremities. In vitro, hStau and mStau bind dsRNA via each of two full-length dsRNA-binding domains and tubulin via a region similar to the microtubule-binding domain of MAP-1B, suggesting that Stau cross-links cytoskeletal and RNA components. Immunofluorescent double labeling of transfected mammalian cells revealed that Stau is localized to the rough endoplasmic reticulum (RER), implicating this RNA-binding protein in mRNA targeting to the RER, perhaps via a multistep process involving microtubules. These results are the first demonstration of the association of an RNA-binding protein in addition to ribosomal proteins, with the RER, implicating this class of proteins in the transport of RNA to its site of translation.  (+info)

RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. (2/2793)

The RNA-binding/dimerization domain of the NS1 protein of influenza A virus (73 amino acids in length) exhibits a novel dimeric six-helical fold. It is not known how this domain binds to its specific RNA targets, one of which is double-stranded RNA. To elucidate the mode of RNA binding, we introduced single alanine replacements into the NS1 RNA-binding domain at specific positions in the three-dimensional structure. Our results indicate that the dimer structure is essential for RNA binding, because any alanine replacement that causes disruption of the dimer also leads to the loss of RNA-binding activity. Surprisingly, the arginine side chain at position 38, which is in the second helix of each monomer, is the only amino-acid side chain that is absolutely required only for RNA binding and not for dimerization, indicating that this side chain probably interacts directly with the RNA target. This interaction is primarily electrostatic, because replacement of this arginine with lysine had no effect on RNA binding. A second basic amino acid, the lysine at position 41, which is also in helix 2, makes a strong contribution to the affinity of binding. We conclude that helix 2 and helix 2', which are antiparallel and next to each other in the dimer conformation, constitute the interaction face between the NS1 RNA-binding domain and its RNA targets, and that the arginine side chain at position 38 and possibly the lysine side chain at position 41 in each of these antiparallel helices contact the phosphate backbone of the RNA target.  (+info)

Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. (3/2793)

The initiation of an immune response is critically dependent on the activation of dendritic cells (DCs). This process is triggered by surface receptors specific for inflammatory cytokines or for conserved patterns characteristic of infectious agents. Here we show that human DCs are activated by influenza virus infection and by double-stranded (ds)RNA. This activation results not only in increased antigen presentation and T cell stimulatory capacity, but also in resistance to the cytopathic effect of the virus, mediated by the production of type I interferon, and upregulation of MxA. Because dsRNA stimulates both maturation and resistance, DCs can serve as altruistic antigen-presenting cells capable of sustaining viral antigen production while acquiring the capacity to trigger naive T cells and drive polarized T helper cell type 1 responses.  (+info)

Activation of target-tissue immune-recognition molecules by double-stranded polynucleotides. (4/2793)

Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of gamma-interferon (gammaIFN), i.e., ds polynucleotides increase class I much more than class II, whereas gammaIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-kappaB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from gammaIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.  (+info)

Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. (5/2793)

We completely sequenced 13,936 nucleotides (nt) of a double-stranded RNA (dsRNA) of wild rice (W-dsRNA). A single long open reading frame (13,719 nt) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase was located in the coding strand. The identity between entire nucleotide sequence of W-dsRNA and that of the dsRNA of temperate japonica rice (J-dsRNA, 13,952 nt) was 75.5%. A site-specific discontinuity (nick) was identified at nt 1,197 from the 5' end of the coding strand of W-dsRNA. This nick is also located at nt 1,211 from the 5' end in the coding strand of J-dsRNA. The dsRNA copy number was increased more than 10-fold in pollen grains of both rice plants. This remarkable increase may be responsible for the highly efficient transmission of J-dsRNA via pollen that we already reported. J-dsRNA and W-dsRNA were also efficiently transmitted to interspecific F1 hybrids. Seed-mediated dsRNA transmission to F2 plants was also highly efficient when the maternal parent was wild rice. The efficiency of dsRNA transmission to F2 plants was reduced when the maternal parent was temperate japonica rice; however, the reduced rates in F2 plants were returned to high levels in F3 plants.  (+info)

Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage phi6. (6/2793)

Bacteriophage phi6 has a genome of three segments of double-stranded RNA. Each virus particle contains one each of the three segments. Packaging is effected by the acquisition, in a serially dependent manner, of the plus strands of the genomic segments into empty procapsids. The empty procapsids are compressed in shape and expand during packaging. The packaging program involves discrete steps that are determined by the amount of RNA inside the procapsid. The steps involve the exposure and concealment of binding sites on the outer surface of the procapsid for the plus strands of the three genomic segments. The plus strand of segment S can be packaged alone, while packaging of the plus strand of segment M depends upon prior packaging of S. Packaging of the plus strand of L depends upon the prior packaging of M. Minus-strand synthesis begins when the particle has a full complement of plus strands. Plus-strand synthesis commences upon the completion of minus-strand synthesis. All of the reactions of packaging, minus-strand synthesis, and plus-strand synthesis can be accomplished in vitro with isolated procapsids. Live-virus constructions that are in accord with the model have been prepared. Mutant virus with changes in the packaging program have been isolated and analyzed.  (+info)

The complete genome sequence of the major component of a mild citrus tristeza virus isolate. (7/2793)

The genome of the Spanish mild isolate T385 of citrus tristeza virus (CTV) was completely sequenced and compared with the genomes of the severe isolates T36 (Florida), VT (Israel) and SY568 (California). The genome of T385 was 19,259 nt in length, 37 nt shorter than the genome of T36, and 33 and 10 nt longer than those of VT and SY568, respectively, but their organization was identical. T385 had mean nucleotide identities of 81.3, 89.3 and 94% with T36, VT and SY568, respectively. The 3' UTR had over 97% identity in all isolates, whereas the 5' UTR of T385 had 67% identity with VT, 66.3% with SY568 and only 42.5% with T36. In the coding regions, the nucleotide differences between T385 and VT were evenly distributed along the genome (around 90% identity); this was not observed between T385 and the other isolates. T385 and T36 had nucleotide identities around 90% in the eight 3'-terminal ORFs of the genome, but only 72.3% in ORF 1a, a divergence pattern similar to that reported previously for T36 and VT. T385 and SY568 had nucleotide identities close to 90% in the 5'- and 3'-terminal regions of the genome, whereas the central region had over 99% identity. Our data suggest that the central region in the SY568 genome results from RNA recombination between two CTV genomes, one of which was almost identical to T385.  (+info)

New defective RNAs from citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation. (8/2793)

Defective RNAs (D-RNAs) ranging in size from 1968 to 2759 nt were detected in four citrus tristeza virus (CTV) isolates by hybridization of electroblotted dsRNAs with two probes specific for the 5'- and 3'-terminal genomic regions. The RNAs that hybridized with both probes were eluted, cloned and sequenced. Comparison with the sequences of the corresponding genomic regions of the helper virus showed, in all cases, over 99% nucleotide identity and direct repeats of 4-5 nt flanking or in the vicinity of the junction sites. The presence of the repeats from two separate genome locations suggests a replicase-driven template switching mechanism for the generation of these CTV D-RNAs. Two of the CTV isolates that differed greatly in their pathogenicity contained an identical D-RNA, suggesting that it is unlikely that this D-RNA is involved in symptom modulation, which may be caused by another factor.  (+info)