(1/2154) Ribozymes, genomics and therapeutics.

Genome-sequencing projects are proceeding at a rapid pace and determining the function of open reading frames is the next great challenge. Ribozymes with site-specific cleaving activity could aid greatly in this process. High-throughput screening methods to identify optimal target sites for ribozyme cleavage will provide tools for functional genomics as well as therapeutic reagents.  (+info)

(2/2154) In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron.

The Didymium iridis DiSSU1 intron is located in the nuclear SSU rDNA and has an unusual twin-ribozyme organization. One of the ribozymes (DiGIR2) catalyses intron excision and exon ligation. The other ribozyme (DiGIR1), which along with the endonuclease-encoding I-DirI open reading frame (ORF) is inserted in DiGIR2, carries out hydrolysis at internal processing sites (IPS1 and IPS2) located at its 3' end. Examination of the in vivo expression of DiSSU1 shows that after excision, DiSSU1 is matured further into the I-DirI mRNA by internal DiGIR1-catalysed cleavage upstream of the ORF 5' end, as well as truncation and polyadenylation downstream of the ORF 3' end. A spliceosomal intron, the first to be reported within a group I intron and the rDNA, is removed before the I-DirI mRNA associates with the polysomes. Taken together, our results imply that DiSSU1 uses a unique combination of intron-supplied ribozyme activity and adaptation to the general RNA polymerase II pathway of mRNA expression to allow a protein to be produced from the RNA polymerase I-transcribed rDNA.  (+info)

(3/2154) Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.

Group II self-splicing requires the 5' exon to form base pairs with two stretches of intronic sequence (EBS1 and EBS2) which also bind the DNA target during retrotransposition of the intron. We have used dimethyl sulfate modification of bases to obtain footprints of the 5' exon on intron Pl.LSU/2 from the mitochondrion of the alga Pylaiella littoralis, as well as on truncated intron derivatives. Aside from the EBS sites, which are part of the same subdomain (ID) of ribozyme secondary structure, three distant adenines become either less or more sensitive to modification in the presence of the exon. Unexpectedly, one of these adenines in subdomain IC1 is footprinted only in the presence of the distal helix of domain V, which is involved in catalysis. While the loss of that footprint is accompanied by a 100-fold decrease in the affinity for the exon, both protection from modification and efficient binding can be restored by a separate domain V transcript, whose binding results in its own, concise footprint on domains I and III. Possible biological implications of the need for the group II active site to be complete in order to observe high-affinity binding of the 5' exon to domain I are discussed.  (+info)

(4/2154) High level inhibition of HIV replication with combination RNA decoys expressed from an HIV-Tat inducible vector.

Intracellular immunization, an antiviral gene therapy approach based on the introduction of DNA into cells to stably express molecules for the inhibition of viral gene expression and replication, has been suggested for inhibition of HIV infection. Since the Tat and Rev proteins play a critical role in HIV regulation, RNA decoys and ribozymes of these sequences have potential as therapeutic molecular inhibitors. In the present study, we have generated several anti-HIV molecules; a tat-ribozyme, RRE, RWZ6 and TAR decoys and combinations of decoys, and tested them for inhibition of HIV-1 replication in vitro. We used T cell specific CD2 gene elements and regulatory the HIV inducible promoter to direct high level expression and a 3' UTR sequence for mRNA stabilization. We show that HIV replication was most strongly inhibited with the combination TAR + RRE decoy when compared with the single decoys or the tat-ribozyme. We also show that the Tat-inducible HIV promoter directs a higher level of steady-state transcription of decoys and inhibitors and that higher levels of expression directly relate to increased levels of inhibition of HIV infection. Furthermore, a stabilization of the 3' end of TAR + RRE inhibitor transcripts using a beta-globin 3' UTR sequence leads to an additional 15-fold increase in steady-state RNA levels. This cassette when used to express the best combination decoy inhibitor TAR + RRE, yields high level HIV inhibition for greater than 3 weeks. Taken together, both optimization for high level expression of molecular inhibitors and use of combinations of inhibitors suggest better therapeutic application in limiting the spread of HIV.  (+info)

(5/2154) Rpp14 and Rpp29, two protein subunits of human ribonuclease P.

In HeLa cells, the tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule associated with at least eight protein subunits, hPop1, Rpp14, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. Five of these proteins (hPop1p, Rpp20, Rpp30, Rpp38, and Rpp40) have been partially characterized. Here we report on the cDNA cloning and immunobiochemical analysis of Rpp14 and Rpp29. Polyclonal rabbit antibodies raised against recombinant Rpp14 and Rpp29 recognize their corresponding antigens in HeLa cells and precipitate catalytically active RNase P. Rpp29 shows 23% identity with Pop4p, a subunit of yeast nuclear RNase P and the ribosomal RNA processing enzyme RNase MRP. Rpp14, by contrast, exhibits no significant homology to any known yeast gene. Thus, human RNase P differs in the details of its protein composition, and perhaps in the functions of some of these proteins, from the yeast enzyme.  (+info)

(6/2154) Specificity from steric restrictions in the guanosine binding pocket of a group I ribozyme.

The 3' splice site of group I introns is defined, in part, by base pairs between the intron core and residues just upstream of the splice site, referred to as P9.0. We have studied the specificity imparted by P9.0 using the well-characterized L-21 Scal ribozyme from Tetrahymena by adding residues to the 5' end of the guanosine (G) that functions as a nucleophile in the oligonucleotide cleavage reaction: CCCUCUA5 (S) + NNG <--> CCCUCU + NNGA5. UCG, predicted to form two base pairs in P9.0, reacts with a (kcat/KM) value approximately 10-fold greater than G, consistent with previous results. Altering the bases that form P9.0 in both the trinucleotide G analog and the ribozyme affects the specificity in the manner predicted for base-pairing. Strikingly, oligonucleotides incapable of forming P9.0 react approximately 10-fold more slowly than G, for which the mispaired residues are simply absent. The observed specificity is consistent with a model in which the P9.0 site is sterically restricted such that an energetic penalty, not present for G, must be overcome by G analogs with 5' extensions. Shortening S to include only one residue 3' of the cleavage site (CCCUCUA) eliminates this penalty and uniformly enhances the reactions of matched and mismatched oligonucleotides relative to guanosine. These results suggest that the 3' portion of S occupies the P9.0 site, sterically interfering with binding of G analogs with 5' extensions. Similar steric effects may more generally allow structured RNAs to avoid formation of incorrect contacts, thereby helping to avoid kinetic traps during folding and enhancing cooperative formation of the correct structure.  (+info)

(7/2154) The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme.  (+info)

(8/2154) Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem.

Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway.  (+info)