Substrate utilization by Ehrlichia sennetsu and Ehrlichia risticii separated from host constituents by renografin gradient centrifugation. (49/98)

The in vitro metabolic activities of two monocytic species of Ehrlichia were investigated. The Miyayama strain of Ehrlichia sennetsu and two strains of Ehrlichia risticii, isolated in Illinois and Maryland, were cultivated in a P388D1 mouse macrophage cell line. The ehrlichia particles from heavily infected cultures were separated from host constituents by a Renografin gradient centrifugation procedure modified from those employed for rickettsiae and chlamydiae. The metabolic activities of the isolated ehrlichiae were measured by their formation of CO2 after incubation for 1 h or longer at 34 degrees C with 14C-labeled substrates. Of the substrates tested, glutamine was utilized most vigorously. The greatest activity was obtained at pH 7.2 to 8.0, while the activity rapidly declined at pH below 7. The most favorable buffer was one that contained 0.05 M potassium phosphate as well as 0.2 M sucrose, thus affording some osmotic protection. Glutamate was utilized to a much lesser extent than glutamine, and glucose was not utilized at all. No consistent differences in metabolic activities among the three strains were observed.  (+info)

Reduced immune responsiveness and lymphoid depletion in mice infected with Ehrlichia risticii. (50/98)

The histopathology of the thymus and spleen and the response of spleen cells to mitogenic stimuli were evaluated in Sprague-Dawley CF-1 mice infected with Ehrlichia risticii. Intraperitoneal injection of 10(4) or 10(6) E. risticii-infected U-937 cells into mice resulted in 100% morbidity and partial mortality. Thymic atrophy became significant between 1 and 2 weeks postinfection and remained for the duration of the study. The atrophy appeared associated with antecedent destruction and rarefaction of lymphocytes, resulting in the loss of corticomedullary demarcation. Splenomegaly was prominent; significantly increased weights were detected 7 days postinfection. Histopathologic examination revealed rarefaction of lymphocytes around central arteries, the presence of necrotic debris in histiocytes, and replacement of erythropoiesis by granulopoiesis in the red pulp. Marked and acute reduction of in vitro proliferative responses of spleen cells to concanavalin A (ConA) and phytohemagglutinin were observed in mice infected with 10(4) or 10(6) E. risticii-infected U-937 cells. Interleukin-2 activity in the supernatant of ConA-stimulated spleen cells was also severely reduced. Both changes were time- and dose-dependent and were not associated with decreased spleen cell viability. Neither morbidity nor mortality occurred in mice infected with 10(2) E. risticii-infected U-937 cells. Although there was temporal reduction in phytohemagglutinin-driven lymphocyte proliferation, reduction in neither ConA-driven lymphocyte proliferation nor interleukin-2 activity was observed with this dosage. All E. risticii-inoculated mice seroconverted between days 18 and 25, as detected by the indirect fluorescent-antibody procedure. The findings indicate for the first time the hypoimmune responsiveness and histopathologic changes in lymphoid organs associated with E. risticii infection.  (+info)

Platelet migration inhibtion as an indicator of immunologically mediated target cell injury in canine ehrlichiosis. (51/98)

A platelet migration inhibition test was devised to determine the presence of antiplatelet activity in serum collected from experimentally produced and natural cases of canine ehrlichiosis. The maximum platelet migration inhibition effect was observed during the acute phase of the disease and before the appearance of specific humoral antibody, measured by the indirect fluorescent-antibody test. Platelet migration inhibition may be one of the earliest events leading to pancytopenia. In most cases, sera positive for humoral antibodies also were positive for platelet migration inhibition, although no direct correlation was evident between the serological titer and the degree of platelet migration inhibition. Inoculation of dogs with uninfected canine blood did not induce the production of inhibition factor or antibody activity, which precluded a histocompatibility response to the cellular elements in the inoculum. Scanning electron microscopy indicated that the platelet inhibition factor interfered with platelet migration by inhibiting pseudopod formation. Affected platelets became rounded and showed evidence of clumping and leakage.  (+info)

Enzyme-linked immunosorbent assay for Potomac horse fever disease. (52/98)

An enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) and IgM in natural and experimental infections of equids with Ehrlichia risticii was developed. Ehrlichial organisms purified from an infected mouse macrophage cell line were used as the antigen. IgM was separated from serum IgG by the expedient of spun-column chromatography, allowing the use of an indirect ELISA for quantitation of both IgG and IgM in the test sera. Among 16 paired sera from horses exhibiting clinical signs of Potomac horse fever, 8 were positive by the indirect fluorescent-antibody test (IFA), 11 were positive by the IgG ELISA, and 8 were positive by the IgM ELISA. All IFA-positive specimens were positive by the IgG ELISA, which appeared to be more sensitive than the IFA. In all cases, the IgG ELISA alone would have sufficed for diagnosis when acute- and convalescent-phase sera were available. When 26 single acute- or convalescent-phase serum samples were tested, the IFA detected 8, the IgG ELISA detected 10, and the IgM ELISA detected 6 positive serum specimens. The kinetics of IgG and IgM responses as determined by ELISA in two experimentally infected ponies which survived infection and challenges revealed that specific IgM was short-lived, falling to undetectable levels by day 60 postinoculation, whereas specific IgG persisted for more than 1 year. IgM and IgG were detected as early as days 1 and 10, respectively, postinoculation. The results suggest that the ELISA is more sensitive than the IFA and that the IgM ELISA may provide a means for early diagnosis of Potomac horse fever at or before the onset of clinical signs.  (+info)

Ultrastructural study of ehrlichial organisms in the large colons of ponies infected with Potomac horse fever. (53/98)

Potomac horse fever is characterized by fever, anorexia, leukopenia, profuse watery diarrhea, dehydration, and high mortality. An ultrastructural investigation was made to search for any unusual microorganisms in the digestive system, lymphatic organs, and blood cells of ponies that had developed clinical signs after transfusion with whole blood from horses naturally infected with Potomac horse fever. A consistent finding was the presence of rickettsial organisms in the wall of the intestinal tract of these ponies. The organisms were found mostly in the wall of the large colon, but fewer organisms were found in the small colon, jejunum, and cecum. The organisms were also detected in cultured blood monocytes. In the intestinal wall, many microorganisms were intracytoplasmic in deep glandular epithelial cells and mast cells. Microorganisms were also found in macrophages migrating between glandular epithelial cells in the lamina propria and submucosa. The microorganisms were round, very pleomorphic, and surrounded by a host membrane. They contained fine strands of DNA and ribosomes and were surrounded by double bileaflet membranes. Their ultrastructure was very similar to that of the genus Ehrlichia, a member of the family Rickettsiaceae. The high frequency of detection of the organism in the wall of the intestinal tract, especially in the large colon, indicates the presence of organotrophism in this organism. Infected blood monocytes may be the vehicle for transmission between organs and between animals. The characteristic severe diarrhea may be induced by the organism directly by impairing epithelial cell functions or indirectly by perturbing infected macrophages and mast cells in the intestinal wall or by both.  (+info)

Causative ehrlichial organisms in Potomac horse fever. (54/98)

An ehrlichia was consistently isolated from the peripheral blood leukocyte fraction of ponies that had been experimentally infected with Potomac horse fever by whole blood transfusion from naturally infected horses. The organism was propagated in a human histiocyte cell line for 3 to 5 weeks and then inoculated intravenously or intradermally into healthy adult ponies. Clinical signs of Potomac horse fever, which varied in the degree of severity, occurred 9 to 14 days post-inoculation in all of the ponies. One pony died 20 days post-inoculation. The ehrlichial organism was reisolated in the human histiocyte cell line from the blood leukocyte fraction of all of the experimental ponies on each day that samples were examined (days 9, 10, 11, 19, and 39). These organisms were identical to those originally detected in the wall of the intestine of ponies with clinically diagnosed Potomac horse fever when compared by light and electron microscopy and an immunofluorescence labeling technique. The immunofluorescent antibody titer became positive in a pony at 20 days postinjection. These results indicate that the ehrlichial organisms is the causative agent of Potomac horse fever.  (+info)

Experimental reproduction of Potomac horse fever in horses with a newly isolated Ehrlichia organism. (55/98)

Potomac horse fever, a recently recognized disease of equines, characterized by high fever, leukopenia, and a profuse diarrhea, was studied for its etiology. An Ehrlichia organism was isolated in equine macrophage-fibroblast cell cultures and mouse macrophage cell cultures from the mononuclear cells of blood of infected horses. The agent was continuously propagated in mouse macrophage cell cultures. The organism multiplied in the cytoplasm of mouse macrophage cells and was identified by Giemsa staining, acridine orange staining, and by indirect immunofluorescence with convalescent sera from infected horses. The disease was experimentally reproduced in horses inoculated with Ehrlichia-infected cell culture material. The Ehrlichia organism was reisolated from the blood of these infected horses during the course of the disease. Antibody against the organism was detected in the sera of experimentally infected horses. This study confirmed that the new Ehrlichia organism is the etiological agent of Potomac horse fever.  (+info)

Action of penicillin G on endosymbiote lambda particles of Paramecium aurelia. (56/98)

The kinetics of loss from the cytoplasm and changes in ultrastructure of symbiont lambda particles after treatment of axenically cultivated lambda-bearing Paramecium aurelia with penicillin G was investigated. Low concentrations (1 to 2 unit/ml) of the antibiotic caused many particles within the cell to become filamentous; high concentrations (2,000 unit/ml) caused lysis of the particles without noticeably affecting the protozoan. The ED(50) value (2 to 3 unit/ml) was within the range of values found to cause lysis of many gram-negative bacteria. Rapidly dividing lambda were more vulnerable to the action of the antibiotic than slowly dividing particles. Nondividing particles were not affected by exposure to the antibiotic. Ultrastructural changes observed in lambda during lysis by penicillin G were consistent with the view that penicillin interferes with the synthesis of a vital component of the cell envelope of the particle, possibly a peptidoglycan similar to that found in the cell walls of bacteria. The deoxyribonucleic acid of lambda was dispersed throughout the particle as electron dense fibers enclosed within electron transparent areas. The cell envelope appeared to consist of at least two morphologically distinguishable layers, an inner layer homologous to the plasma membrane of bacteria and an outer layer homologous to the bacterial cell wall. Lambda may be regarded as a randomly distributed population of bacteria growing and dividing synchronously within the collective cytoplasm of its protozoan host.  (+info)