Targeted misexpression of constitutively active BMP receptor-IB causes bifurcation, duplication, and posterior transformation of digit in mouse limb. (33/621)

Members of bone morphogenetic proteins (BMPs) play important roles in many aspects of vertebrate embryogenesis. In developing limbs, BMPs have been implicated in control of anterior-posterior patterning, outgrowth, chondrogenesis, and apoptosis. These diverse roles of BMPs in limb development are apparently mediated by different BMP receptors (BMPR). To identify the developmental processes in mouse limb possibly contributed by BMP receptor-IB (BMPR-IB), we generated transgenic mice misexpressing a constitutively active Bmpr-IB (caBmpr-IB). The transgene driven by the mouse Hoxb-6 promoter was ectopically expressed in the posterior mesenchyme of the forelimb bud, the lateral plate mesoderm, and the whole mesenchyme of the hindlimb bud. While the forelimbs appeared normal, the transgenic hindlimbs exhibited several phenotypes, including bifurcation, preaxial polydactyly, and posterior transformation of the anterior digit. However, the size of bones in the transgenic limbs seemed unaltered. Defects in sternum and ribs were also found. The bifurcation in the transgenic hindlimb occurred early in the limb development (E10.5) and was associated with extensive cell death in the mesenchyme and occasionally in the apical ectodermal ridge (AER). Sonic hedgehog (Shh) and Patched (Ptc) expression appeared unaffected in the transgenic limb buds, suggesting that the BMPR-IB mediated signaling pathway is downstream from Shh. However, ectopic Fgf4 expression was found in the anterior AER, which may account for the duplication of the anterior digit. An ectopic expression of Gremlin found in the transgenic limb bud would be responsible for the ectopic Fgf4 expression. The observations that Hoxd-12 and Hoxd-13 expression patterns were extended anteriorly provide a molecular basis for the posterior transformation of the anterior digit. Together these results suggest that BMPR-IB is the endogenous receptor to mediate the role of BMPs in anterior-posterior patterning and apoptosis in mouse developing limb. In addition, BMPR-IB may represent a critical component in the Shh/FGF4 feedback loop by regulating Gremlin expression.  (+info)

Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax9. (34/621)

The expression of the homeobox gene Uncx4.1 in the somite is restricted to the caudal half of the newly formed somite and sclerotome. Here we show that mice with a targeted mutation of the Uncx4.1 gene exhibit defects in the axial skeleton and ribs. In the absence of Uncx4.1, pedicles of the neural arches and proximal ribs are not formed. In addition, dorsal root ganglia are disorganized. Histological and marker analysis revealed that Uncx4.1 is not necessary for somite segmentation. It is required to maintain the condensation of the caudal half-sclerotome, from which the missing skeletal elements are derived. The loss of proximal ribs in Pax1/Pax9 double mutants and the data presented here argue for a role of Uncx4.1 upstream of Pax9 in the caudolateral sclerotome. Our results further indicate that Uncx4.1 may be involved in the differential cell adhesion properties of the somite.  (+info)

The paired homeobox gene Uncx4.1 specifies pedicles, transverse processes and proximal ribs of the vertebral column. (35/621)

The axial skeleton develops from the sclerotome, a mesenchymal cell mass derived from the ventral halves of the somites, segmentally repeated units located on either side of the neural tube. Cells from the medial part of the sclerotome form the axial perichondral tube, which gives rise to vertebral bodies and intervertebral discs; the lateral regions of the sclerotome will form the vertebral arches and ribs. Mesenchymal sclerotome cells condense and differentiate into chondrocytes to form a cartilaginous pre-skeleton that is later replaced by bone tissue. Uncx4.1 is a paired type homeodomain transcription factor expressed in a dynamic pattern in the somite and sclerotome. Here we show that mice homozygous for a targeted mutation of the Uncx4.1 gene die perinatally and exhibit severe malformations of the axial skeleton. Pedicles, transverse processes and proximal ribs, elements derived from the lateral sclerotome, are lacking along the entire length of the vertebral column. The mesenchymal anlagen for these elements are formed initially, but condensation and chondrogenesis do not occur. Hence, Uncx4.1 is required for the maintenance and differentiation of particular elements of the axial skeleton.  (+info)

Differential regulation of IGF-binding proteins in rabbit costal chondrocytes by IGF-I and dexamethasone. (36/621)

Cartilage is a primary target tissue for the IGFs. The mitogenic activity of these peptides is regulated by a family of high-affinity IGF-binding proteins (IGFBP-1 to -6). We characterized the IGFBPs produced by cultured chondrocytes derived from rib cartilage of prepubertal rabbits. Culture medium, which had been conditioned by these cells for 48 h showed bands of 22 kDa, 24 kDa and a 31/32 kDa doublet by Western ligand blotting with [(125)I]IGF-II. When the cells were grown in the presence of increasing amounts of IGF-I or IGF-II, the 31/32 kDa doublet increased in intensity (reaching a plateau of about 11-fold stimulation between 2 and 10 nM IGF-I). The 22 kDa and 24 kDa bands increased only slightly while a 26 kDa band became faintly visible. By Western immunoblotting the 31/32 kDa doublet was identified as IGFBP-5. An IGF-I analog with reduced affinity for IGFBPs, Long-R3 IGF-I, also induced IGFBP-5, while insulin was less effective (2.2-fold stimulation at 10 nM). IGF-I protected IGFBP-5 against proteolytic degradation by conditioned medium. IGF-I also enhanced the level of IGFBP-5 mRNA. LY294002, a specific inhibitor of the intracellular signaling molecule phosphatidylinositol 3-kinase, inhibited stimulation of IGFBP-5 by IGF-I. Dexamethasone suppressed IGFBP-5 (by 70% at 20 nM) but, at the same time, a 39/41 kDa doublet (presumably IGFBP-3) was induced. IGFBP-5 has been shown in several cell types to enhance the mitogenic activity of IGF-I. IGFBP-3 generally acts as a growth inhibitor. Therefore, the differential effects of dexamethasone on these regulatory proteins could account, at least in part, for the growth-arresting effect of this glucocorticoid.  (+info)

A surgical case of solitary plasmacytoma of rib origin with biclonal gammopathy. (37/621)

Localized solitary plasmacytoma of the bone (SPB) is a rare disease and is characterized by only one or two isolated bone lesions with no evidence of disease dissemination. A previously healthy 44-year-old male was admitted for evaluation of an abnormal radiographic shadow in the left middle lung field with symptoms of left back pain. Radiological evaluation revealed a peripheral opacity in the left chest wall, which was highly suspected to be a chest wall tumor. CT-guided transcutaneous needle biopsy of the tumor was performed and the specimens showed a monomorphous population of mature plasma cells. The bone marrow biopsy findings revealed no evidence of myeloma and bone scanning revealed only abnormal accumulation in the left seventh rib. He had mild M-proteins in a urine sample and Bence-Jones protein was detected. Immunoelectrophoresis revealed mild biclonal gammopathy of Bence-Jones protein of both the kappa and lambda light-chain types. Under a diagnosis of solitary bone plasmacytoma, preoperative radiation therapy with doses of 40 Gy for the tumor was performed. He underwent complete en bloc resection of the chest wall, including one-third of the left sixth and seventh ribs, the intercostal muscle and the parietal pleura. The protein abnormalities in the urine sample disappeared following surgical resection. Adjuvant chemotherapy using melphalan and prednisolone was performed. He is doing well without evidence of tumor recurrence 2 years following his initial diagnosis.  (+info)

Widespread expression of tartrate-resistant acid phosphatase (Acp 5) in the mouse embryo. (38/621)

Tartrate-resistant acid phosphatase (TRAP, Acp 5) is considered to be a marker of the osteoclast and studies using 'knockout' mice have demonstrated that TRAP is critical for normal development of the skeleton. To investigate the distribution of TRAP in the mammalian embryo, cryostat sections of 18 d murine fetuses were examined by in situ hybridisation, immunohistochemistry and histochemical reactions in situ. Abundant expression of TRAP mRNA was observed in the skin and epithelial surfaces of the tongue, oropharynx and gastrointestinal tract including the colon, as well as the thymus, ossifying skeleton and dental papillae. TRAP protein was identified at the same sites, but the level of expression in the different tissues did not always correlate with apparent enzyme activity. The findings indicate that abundant TRAP expression is not confined to osteoclasts in bone, but occurs in diverse tissues harbouring cells of bone marrow origin, including dendritic cells and other cells belonging to the osteoclast/macrophage lineage.  (+info)

Systemic polyomavirus genome increase and dissemination of capsid-defective genomes in mammary gland tumor-bearing mice. (39/621)

BALB/c mice that developed tumors 7 to 8 months following neonatal infection by polyomavirus (PYV) wild-type strain A2 were characterized with respect to the abundance and integrity of the viral genome in the tumors and in 12 nontumorous organs. These patterns were compared to those found in tumor-free mice infected in parallel. Six mice were analyzed in detail including four sibling females with mammary gland tumors. In four of five mammary gland tumors, the viral genome had undergone a unique deletion and/or rearrangement. Three tumor-resident genomes with an apparently intact large T coding region were present in abundant levels in an unintegrated state. Two of these had undergone deletions and rearrangements involving the capsid genes and therefore lacked the capacity to produce live virus. In the comparative organ survey, the tumors harboring replication-competent genomes contained by far the highest levels of genomes of any tissue. However, the levels of PYV genomes in other organs were elevated by up to 1 to 2 orders of magnitude compared to those detected in the same organs of tumor-free mice. The genomes found in the nontumorous organs had the same rearrangements as the genomes residing in the tumors. The original wild-type genome was detected at low levels in a few organs, particularly in the kidneys. The data indicate that a systemic increase in the level of viral genomes occurred in conjunction with the induction of tumors by PYV. The results suggest two novel hypotheses: (i) that genomes may spread from the tumors to the usual PYV target tissues and (ii) that this dissemination may take place in the absence of capsids, providing an important path for a virus to escape from the immune response. This situation may offer a useful model for the spread of HPV accompanying HPV-induced oncogenesis.  (+info)

Thoracic skeletal defects in myogenin- and MRF4-deficient mice correlate with early defects in myotome and intercostal musculature. (40/621)

Myogenin and MRF4 are skeletal muscle-specific bHLH transcription factors critical for muscle development. In addition to a variety of skeletal muscle defects, embryos homozygous for mutations in myogenin or MRF4 display phenotypes in the thoracic skeleton, including rib fusions and sternal defects. These skeletal defects are likely to be secondary because myogenin and MRF4 are not expressed in the rib cartilage or sternum. In this study, the requirement for myogenin and MRF4 in thoracic skeletal development was further examined. When a hypomorphic allele of myogenin and an MRF4-null mutation were placed together, the severity of the thoracic skeletal defects was greatly increased and included extensive rib cartilage fusion and fused sternebrae. Additionally, new rib defects were observed in myogenin/MRF4 compound mutants, including a failure of the rib cartilage to contact the sternum. These results suggested that myogenin and MRF4 share overlapping functions in thoracic skeletal formation. Spatial expression patterns of skeletal muscle-specific markers in myogenin- and MRF4-mutant embryos revealed early skeletal muscle defects not previously reported. MRF4-/- mice displayed abnormal intercostal muscle morphology, including bifurcation and fusion of adjacent intercostals. myogenin/MRF4-mutant combinations displayed ventral myotome defects, including a failure to express normal levels of myf5. The results suggested that the early muscle defects observed in myogenin and MRF4 mutants may cause subsequent thoracic skeletal defects, and that myogenin and MRF4 have overlapping functions in ventral myotome differentiation and intercostal muscle morphogenesis.  (+info)