Sequence analysis of a 32-kb region including the major ribosomal protein gene clusters from alkaliphilic Bacillus sp. strain C-125. (17/4527)

Forty-one open reading frames (ORFs) were identified in a 32-kb DNA fragment of alkaliphilic Bacillus sp. C-125. A similarity search using the BSORF database found 37 ORFs with significant sequence similarity to B. subtilis RNA polymerase subunits, elongation factor G, elongation factor Tu, and ribosomal proteins. Each ORF product showed more than 70% identity to those of B. subtilis. Gene organization in the region of str, S10, spc, and the alpha cluster was highly conserved among three strains, C-125, B. subtilis, and B. stearothermophilus.  (+info)

Modulation of rat preadipocyte adipose conversion by androgenic status: involvement of C/EBPs transcription factors. (18/4527)

Androgenic status affects rat preadipocyte adipose conversion from two deep intra-abdominal (epididymal and perirenal) fat depots differently. The aim of this study was to establish whether these site-specific alterations of adipogenesis are related to altered expressions of the transcriptional factors regulating proliferation and differentiation of preadipocytes, c-myc and CCAAT/enhancer binding proteins (C/EBPs: C/EBPalpha and beta). The increased proliferation of epididymal and perirenal preadipocytes from castrated rats was not linked to variations in c-myc mRNA and protein levels. The expression of the early marker of adipogenesis, lipoprotein lipase (LPL), was decreased by androgenic deprivation in epididymal cells but remained insensitive to the androgenic status in perirenal preadipocytes. In contrast, LPL expression increased in subcutaneous preadipocytes from castrated rats, an effect which was partly corrected by testosterone treatment. Expression of C/EBPbeta was unaffected by androgenic status whatever the anatomical origin of the preadipocytes. In contrast, the mRNA and protein levels of C/EBPalpha were greatly decreased by androgenic deprivation in epididymal cells, an alteration which could not be corrected by in vivo testosterone administration. Altogether these results demonstrated that in preadipocytes androgenic deprivation affects site-specifically the expression of LPL, an early marker of adipogenesis and of C/EBPalpha, a master regulator of adipogenesis. These observations contribute to an explanation of why castration induces defective adipose conversion in rat epididymal preadipocytes specifically.  (+info)

Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. (19/4527)

The induction of immunity genes in Drosophila has been proposed to be dependent on Dorsal, Dif, and Relish, the NF-kappaB-related factors. Here we provide genetic evidence that Dif is required for the induction of only a subset of antimicrobial peptide genes. The results show that the presence of Dif without Dorsal is sufficient to mediate the induction of drosomycin and defensin. We also demonstrate that Dif is a downstream component of the Toll signaling pathway in activating the drosomycin expression. These results reveal that individual members of the NF-kappaB family in Drosophila have distinct roles in immunity and development.  (+info)

Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. (20/4527)

The TOR (target of rapamycin) signal transduction pathway is an important mechanism by which cell growth is controlled in all eucaryotic cells. Specifically, TOR signaling adjusts the protein biosynthetic capacity of cells according to nutrient availability. In mammalian cells, one branch of this pathway controls general translational initiation, whereas a separate branch specifically regulates the translation of ribosomal protein (r-protein) mRNAs. In Saccharomyces cerevisiae, the TOR pathway similarly regulates general translational initiation, but its specific role in the synthesis of ribosomal components is not well understood. Here we demonstrate that in yeast control of ribosome biosynthesis by the TOR pathway is surprisingly complex. In addition to general effects on translational initiation, TOR exerts drastic control over r-protein gene transcription as well as the synthesis and subsequent processing of 35S precursor rRNA. We also find that TOR signaling is a prerequisite for the induction of r-protein gene transcription that occurs in response to improved nutrient conditions. This induction has been shown previously to involve both the Ras-adenylate cyclase as well as the fermentable growth medium-induced pathways, and our results therefore suggest that these three pathways may be intimately linked.  (+info)

Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. (21/4527)

Determining protein functions from genomic sequences is a central goal of bioinformatics. We present a method based on the assumption that proteins that function together in a pathway or structural complex are likely to evolve in a correlated fashion. During evolution, all such functionally linked proteins tend to be either preserved or eliminated in a new species. We describe this property of correlated evolution by characterizing each protein by its phylogenetic profile, a string that encodes the presence or absence of a protein in every known genome. We show that proteins having matching or similar profiles strongly tend to be functionally linked. This method of phylogenetic profiling allows us to predict the function of uncharacterized proteins.  (+info)

Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. (22/4527)

C6.9 rat glioma cells undergo a cell death program when exposed to 1, 25-dihydroxyvitamin D3 (1,25-D3). As a global analytical approach, we have investigated gene expression in C6.9 engaged in this cell death program using differential screening of a rat brain cDNA library with probes derived from control and 1,25-D3-treated cells. Using this methodology we report the isolation of 61 differentially expressed cDNAs. Forty-seven cDNAs correspond to genes already characterized in rat cells or tissues. Seven cDNAs are homologous to yeast, mouse or human genes and seven are not related to known genes. Some of the characterized genes have been reported to be differentially expressed following induction of programmed cell death. These include PMP22/gas3, MGP and beta-tubulin. For the first time, we also show a cell death program induced up-regulation of the c-myc associated primary response gene CRP, and of the proteasome RN3 subunit and TCTP/mortalin genes. Another interesting feature of this 1,25-D3 induced-cell death program is the down-regulated expression of transcripts for the microtubule motor dynein heavy chain/MAP 1C and of the calcium-binding S100beta protein. Finally 15 upregulated cDNAs encode ribosomal proteins suggesting a possible involvement of the translational apparatus in this cell program. Alternatively, these ribosomal protein genes could be up-regulated in response to altered rates of cellular metabolism, as has been demonstrated for most of the other isolated genes which encode proteins involved in metabolic pathways. Thus, this study presents to our knowledge the first characterization of genes which are differentially expressed during a cell death program induced by 1, 25-D3. Therefore, this data provides new information on the fundamental mechanisms which participate in the antineoplastic effects of 1,25-D3 and on the machinery of a cell death program in a glioma cell line.  (+info)

Leucine regulates translation of specific mRNAs in L6 myoblasts through mTOR-mediated changes in availability of eIF4E and phosphorylation of ribosomal protein S6. (23/4527)

Regulation of translation of mRNAs coding for specific proteins plays an important role in controlling cell growth, differentiation, and transformation. Two proteins have been implicated in the regulation of specific mRNA translation: eukaryotic initiation factor eIF4E and ribosomal protein S6. Increased phosphorylation of eIF4E as well as its overexpression are associated with stimulation of translation of mRNAs with highly structured 5'-untranslated regions. Similarly, phosphorylation of S6 results in preferential translation of mRNAs containing an oligopyrimidine tract at the 5'-end of the message. In the present study, leucine stimulated phosphorylation of the eIF4E-binding protein, 4E-BP1, in L6 myoblasts, resulting in dissociation of eIF4E from the inactive eIF4E.4E-BP1 complex. The increased availability of eIF4E was associated with a 1.6-fold elevation in ornithine decarboxylase relative to global protein synthesis. Leucine also stimulated phosphorylation of the ribosomal protein S6 kinase, p70(S6k), resulting in increased phosphorylation of S6. Hyperphosphorylation of S6 was associated with a 4-fold increase in synthesis of elongation factor eEF1A. Rapamycin, an inhibitor of the protein kinase mTOR, prevented all of the leucine-induced effects. Thus, leucine acting through an mTOR-dependent pathway stimulates the translation of specific mRNAs both by increasing the availability of eIF4E and by stimulating phosphorylation of S6.  (+info)

Amber mutations in ribosome recycling factors of Escherichia coli and Thermus thermophilus: evidence for C-terminal modulator element. (24/4527)

Ribosome recycling factor, referred to as RRF, is essential for bacterial growth because of its activity of decomposition of the post-termination complex of the ribosome after release of polypeptides. In this study, we isolated a conditionally lethal amber mutation, named frr-3, in the Escherichia coli RRF gene at amino acid position 161, showing that the truncation of the C-terminal 25 amino acids of RRF is lethal to E. coli. An RRF gene cloned from Thermus thermophilus, whose protein is 44% identical and 68% similar to E. coli RRF, failed to complement the frr-3(Am) allele. However, truncation of the C-terminal five amino acids conferred intergeneric complementation activity on T. thermophilus RRF, demonstrating the modulator activity of the C-terminal tail. Rapid purification of T. thermophilus RRF was achieved by T7-RNA polymerase-driven overexpression for crystallography.  (+info)