Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. (33/359)

The purpose of the present investigation was to determine whether mammalian target of rapamycin (mTOR)-mediated signalling and some key regulatory proteins of translation initiation are altered in skeletal muscle during the immediate phase of recovery following acute resistance exercise. Rats were operantly conditioned to reach an illuminated bar located high on a Plexiglass cage, such that the animals completed concentric and eccentric contractions involving the hindlimb musculature. Gastrocnemius muscle was extracted immediately after acute exercise and 5, 10, 15, 30 and 60 min of recovery. Phosphorylation of protein kinase B (PKB) on Ser-473 peaked at 10 min of recovery (282% of control, P < 0.05) with no significant changes noted for mTOR phosphorylation on Ser-2448. Eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) and S6 kinase-1 (S6K1), both downstream effectors of mTOR, were altered during recovery as well. 4E-BP1 phosphorylation was significantly elevated at 10 min (292%, P < 0.01) of recovery. S6K1 phosphorylation on Thr-389 demonstrated a trend for peak activation at 10 min following exercise (336%, P = 0.06) with ribosomal protein S6 phosphorylation being maximally activated at 15 min of recovery (647%, P < 0.05). Components of the eIF4F complex were enhanced during recovery as eIF4E association with eIF4G peaked at 10 min (292%, P < 0.05). Events regulating the binding of initiator methionyl-tRNA to the 40S ribosomal subunit were assessed through eIF2B activity and eIF2 alpha phosphorylation on Ser-51. No differences were noted with either eIF2B or eIF2 alpha. Collectively, these results provide strong evidence that mTOR-mediating signalling is transiently upregulated during the immediate period following resistance exercise and this response may constitute the most proximal growth response of the cell.  (+info)

Diethylsulphate and methylnitrosourea affect different targets in Chinese hamster fibroblasts: possible mechanisms of aneuploidy induction by these agents. (34/359)

It has been shown that the ethylating agent diethylsulphate (DES) induces centromere-containing micronuclei with kinetics suggesting that molecules other than DNA could be targets. In quiescent Chinese hamster fibroblasts CHEF/18, O6-alkylated bases inhibit ribosomal protein S6 kinase (S6K1), the terminal member of a kinase cascade responsible for an increased rate of protein synthesis, but not extracellular signal-activated kinases (ERK1/2) or terminal kinases of a second cascade which activates transcription. The inhibition correlates with the appearance of abnormal metaphases at the following mitosis, suggesting that alkylation of the nucleotide pool and inhibition of S6K1 could be one of the mechanisms leading to chromosome loss by alkylating agents. To clarify the role of protein kinases in chromosome loss induced by alkylating agents, we have studied the effects of DES and methylnitrosourea (MNU) on S6K1 and ERK1/2 activation by growth factors. The alkylating agents were studied in a battery of Chinese hamster fibroblasts (CHEF/18, CHO and ClB) with normal and mutated p53 to control for DNA damage-induced activation of p53, which could indirectly inhibit protein kinases. The role of repair in induction of micronuclei was studied in mismatch repair-proficient CHO and repair-deficient ClB cells. Our results indicate that DES induced micronuclei in a mismatch repair-independent manner, within 8 h of treatment, in agreement with a role for S6K1 inhibition in micronucleus formation. MNU induced centromere-containing micronuclei only in CHO cells, one cell cycle after treatment, without any detectable influences on either kinase cascade, suggesting a role for mismatch repair in chromosome loss.  (+info)

Activation of S6 kinase by repeated cycles of stretching and relaxation in rat glomerular mesangial cells. Evidence for involvement of protein kinase C. (35/359)

Quiescent rat glomerular mesangial cells were exposed to repeated cycles of stretching and relaxation, and the effects on the rate of collagen production, proliferation, and S6 kinase activity were investigated. Stretch/relaxation induced increases in production of both collagen and non-collagenous proteins. Proliferation of mesangial cells was stimulated by stretch/relaxation and epidermal growth factor, but not by angiotensin II; however, administration of angiotensin II augmented stretch/relaxation-induced cell proliferation. Cytosolic S6 kinase activity was stimulated by stretch/relaxation, angiotensin II, epidermal growth factor, or phorbol 12-myristate 13-acetate. The increased S6 kinase activity was detectable within 30 min after initiation of stretch/relaxation and was blocked by either inhibitors of protein kinase C or prior down-regulation of protein kinase C following prolonged incubation with phorbol 12-myristate 13-acetate. Both translocation of protein kinase C from the cytosolic to the membrane fraction and phosphorylation of an endogenous 80-kDa protein were observed within 5 min of initiation of stretch/relaxation. These results demonstrate that in mesangial cells, mechanical factors alone can induce increases in production of collagen and non-collagenous proteins and in cell proliferation. The observation that stretch/relaxation induced stimulation of S6 kinase activity through protein kinase C-dependent mechanisms suggests that activation of protein kinase C may be a key event in initiating adaptive responses of mesangial cells to increased workload.  (+info)

M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. (36/359)

Multinucleated bone-resorbing osteoclasts (Ocl) are cells of hematopoietic origin that play a major role in osteoporosis pathophysiology. Ocl survival and activity require M-CSF and RANK ligand (RANKL). M-CSF signals to Akt, while RANKL, like TNFalpha, activates NF-kappaB. We show here that although these are separate pathways in the Ocl, signaling of all three cytokines converges on mammalian target of rapamycin (mTOR) as part of their antiapoptotic action. Accordingly, rapamycin blocks M-CSF- and RANKL-dependent Ocl survival inducing apoptosis, and suppresses in vitro bone resorption proportional to the reduction in Ocl number. The cytokine signaling intermediates for mTOR/ribosomal protein S6 kinase (S6K) activation include phosphatidylinositol-3 kinase, Akt, Erks and geranylgeranylated proteins. Inhibitors of these intermediates suppress cytokine activation of S6K and induce Ocl apoptosis. mTOR regulates protein translation acting via S6K, 4E-BP1 and S6. We find that inhibition of translation by other mechanisms also induces Ocl apoptosis, demonstrating that Ocl survival is highly sensitive to continuous de novo protein synthesis. This study thus identifies mTOR/S6K as an essential signaling pathway engaged in the stimulation of cell survival in osteoclasts.  (+info)

Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. (37/359)

Identification of signaling pathways downstream of Abl tyrosine kinase may increase our understanding of the pathogenesis of chronic myelogenous leukemia (CML) and suggest strategies to improve clinical treatment of the disease. By combining the use of a phosphospecific antibody recognizing a substrate motif of serine/threonine kinases with bioinformatics, we found that the translational regulators ribosomal protein S6 and 4E-BP1 are constitutively phosphorylated in CML cells. Experiments with specific inhibitors indicated the phosphorylation is downstream of Bcr-Abl kinase and the mammalian target of rapamycin (mTOR). These results suggest that Bcr-Abl may regulate translation of critical targets in CML cells via mTOR. They also provide a rationale for testing the combination of mTOR inhibitors with the Abl kinase inhibitor imatinib in patients with CML. The mTOR inhibitor rapamycin enhanced imatinib-mediated killing of CML cell lines in vitro, and it overcame imatinib resistance in cells with Bcr-Abl gene amplification.  (+info)

Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. (38/359)

The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation.  (+info)

Amino acids do not alter the insulin-induced activation of the insulin signaling pathway in neonatal pigs. (39/359)

Feeding stimulates protein synthesis in skeletal muscle and liver of neonates and this response can be reproduced in muscle by the infusion of insulin or amino acids and in liver by the infusion of amino acids, but not insulin. Activation of insulin signaling components leading to translation initiation is associated with the feeding-induced stimulation of muscle protein synthesis in neonates. In this study, we examined the individual roles of insulin and amino acids in the activation of insulin signaling components leading to translation initiation, specifically, the insulin receptor (IR), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI 3-kinase), protein kinase B (PKB) and ribosomal protein S6. Insulin secretion was blocked by somatostatin in food-deprived, 7-d-old pigs (n=8-12/group); insulin was infused to achieve plasma levels of approximately 0, 17, 52, and 255 pmol/L (approximately 0, 2, 6, 30 microU/mL), and amino acids were clamped at food-deprived or fed levels. In skeletal muscle, insulin increased the activation of IR, IRS-1, PI 3-kinase, PKB and S6 and stimulated protein synthesis. In liver, insulin increased the activation of IR, IRS-1, PI 3-kinase, PKB and S6, but had no effect on protein synthesis. Raising amino acids from the food-deprived to the fed level did not alter the insulin-induced activation of IR, IRS-1, PI 3-kinase and PKB but increased S6 phosphorylation and protein synthesis in skeletal muscle and liver. The results suggest that the stimulation of protein synthesis in muscle by insulin involves activation of insulin signaling components, and the stimulation of protein synthesis in muscle and liver by amino acids occurs by mechanisms independent of the early steps of this pathway. Furthermore, amino acids do not alter the insulin-stimulated activation of early steps in the insulin signaling pathway.  (+info)

Unique, highly proliferative growth phenotype expressed by embryonic and neointimal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN. (40/359)

BACKGROUND: At distinct times during embryonic development and after vascular injury, smooth muscle cells (SMCs) exhibit a highly proliferative, serum-independent growth phenotype. The aim of the present study was to evaluate the functional role of S6 ribosomal protein (S6RP) and upstream positive and negative regulators in the control of SMC serum-independent growth. METHODS AND RESULTS: We previously reported increased expression of S6RP mRNA was associated with this unique growth phenotype. Using immunohistochemistry and Western blot analysis, we report high levels of total and phospho-S6RP and increased levels of Akt and p70S6K phosphorylation, upstream positive regulators of S6RP, in rat embryonic aortas and adult balloon-injured carotid arteries compared with quiescent adult aortas and uninjured carotid arteries. Western blot analysis demonstrated that cultured embryonic and neointimal SMCs that exhibited serum-independent growth capabilities expressed high levels of S6RP and constitutively active Akt, mTOR, and p70S6K. Pharmacological and molecular inhibition of phosphatidylinositol 3-kinase (PI3K) signaling pathways, using PI3K inhibitors, rapamycin, or dominant-negative Akt adenovirus, suppressed embryonic and neointimal SMC serum-independent growth. Finally, decreased activity of PTEN, an endogenous negative regulator of PI3K signaling, was associated with high in vivo SMC growth rates, and morpholino-mediated loss of endogenous PTEN induced a serum-independent growth phenotype in cultured serum-dependent SMCs. CONCLUSIONS: The possibility exists that cells that exhibit a distinct embryonic-like growth phenotype different from traditional SMCs are major contributors to intimal thickening. Growth of SMCs that exhibit this phenotype is dependent on constitutive Akt and mTOR/p70S6K signaling and is actively inhibited through the timed acquisition of the endogenously produced growth suppressor PTEN.  (+info)