Loading...
(1/644) Rpp14 and Rpp29, two protein subunits of human ribonuclease P.

In HeLa cells, the tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule associated with at least eight protein subunits, hPop1, Rpp14, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. Five of these proteins (hPop1p, Rpp20, Rpp30, Rpp38, and Rpp40) have been partially characterized. Here we report on the cDNA cloning and immunobiochemical analysis of Rpp14 and Rpp29. Polyclonal rabbit antibodies raised against recombinant Rpp14 and Rpp29 recognize their corresponding antigens in HeLa cells and precipitate catalytically active RNase P. Rpp29 shows 23% identity with Pop4p, a subunit of yeast nuclear RNase P and the ribosomal RNA processing enzyme RNase MRP. Rpp14, by contrast, exhibits no significant homology to any known yeast gene. Thus, human RNase P differs in the details of its protein composition, and perhaps in the functions of some of these proteins, from the yeast enzyme.  (+info)

(2/644) RNA-protein interactions in the human RNase MRP ribonucleoprotein complex.

The eukaryotic nucleolus contains a large number of small RNA molecules that, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. One of the snoRNPs that has been shown to possess enzymatic activity is the RNase MRP. RNase MRP is an endoribonuclease involved in the formation of the 5' end of 5.8S rRNA. In this study the association of the hPop1 protein with the RNase MRP complex was investigated. The hPop1 protein seems not to be directly bound to the RNA component, but requires nt 1-86 and 116-176 of the MRP RNA to associate with the RNase MRP complex via protein-protein interactions. UV crosslinking followed by ribonuclease treatment and immunoprecipitation with anti-Th/To antibodies revealed three human proteins of about 20, 25, and 40 kDa that can associate with the RNase MRP complex. The 20- and 25-kDa proteins appear to bind to stem-loop I of the MRP RNA whereas the 40-kDa protein requires the central part of the MRP RNA (nt 86-176) for association with the RNase MRP complex. In addition, we show that the human RNase P proteins Rpp30 and Rpp38 are also associated with the RNase MRP complex. Expression of Vesicular Stomatitis Virus- (VSV) tagged versions of these proteins in HeLa cells followed by anti-VSV immunoprecipitation resulted in coprecipitation of both RNase P and RNase MRP complexes. Furthermore, UV crosslinking followed by anti-Th/To and anti-Rpp38 immunoprecipitation revealed that the 40-kDa protein we detected in UV crosslinking is probably identical to Rpp38.  (+info)

(3/644) Inhibition of RNase P RNA cleavage by aminoglycosides.

A number of aminoglycosides have been reported to interact and interfere with the function of various RNA molecules. Among these are 16S rRNA, the group I intron, and the hammerhead ribozymes. In this report we show that cleavage by RNase P RNA in the absence as well as in the presence of the RNase P protein is inhibited by several aminoglycosides. Among the ones we tested, neomycin B was found to be the strongest inhibitor with a Ki value in the micromolar range (35 microM). Studies of lead(II)-induced cleavage of RNase P RNA suggested that binding of neomycin B interfered with the binding of divalent metal ions to the RNA. Taken together, our findings suggest that aminoglycosides compete with Mg2+ ions for functionally important divalent metal ion binding sites. Thus, RNase P, which is an essential enzyme, is indeed a potential drug target that can be used to develop new drugs by using various aminoglycosides as lead compounds.  (+info)

(4/644) hPop4: a new protein subunit of the human RNase MRP and RNase P ribonucleoprotein complexes.

RNase MRP is a ribonucleoprotein particle involved in the processing of pre-rRNA. The RNase MRP particle is structurally highly related to the RNase P particle, which is involved in pre-tRNA processing. Their RNA components fold into a similar secondary structure and they share several protein subunits. We have identified and characterised human and mouse cDNAs that encode proteins homologous to yPop4p, a protein subunit of both the yeast RNase MRP and RNase P complexes. The human Pop4 cDNA encodes a highly basic protein of 220 amino acids. Transfection experiments with epitope-tagged hPop4 protein indicated that hPop4 is localised in the nucleus and accumulates in the nucleolus. Immunoprecipitation assays using extracts from transfected cells expressing epitope-tagged hPop4 revealed that this protein is associated with both the human RNase MRP and RNase P particles. Polyclonal rabbit antibodies raised against recombinant hPop4 recognised a 30 kDa protein in total HeLa cell extracts and specifically co-immunoprecipitated the RNA components of the RNase MRP and RNase P complexes. Finally we showed that anti-hPop4 immunoprecipitates possess RNase P enzymatic activity. Taken together, these data show that we have identified a protein that represents the human counterpart of the yeast Pop4p protein.  (+info)

(5/644) Substrate binding and catalysis by ribonuclease P from cyanobacteria and Escherichia coli are affected differently by the 3' terminal CCA in tRNA precursors.

We have studied the effect of the 3' terminal CCA sequence in precursors of tRNAs on catalysis by the RNase P RNA or the holoenzyme from the cyanobacterium Synechocystis sp. PCC 6803 in a completely homologous system. We have found that the absence of the 3' terminal CCA is not detrimental to activity, which is in sharp contrast to what is known in other bacterial systems. We have found that this is also true in other cyanobacteria. This situation correlates with the anomalous structure of the J15/16 loop in cyanobacteria, which is an important loop in the CCA interaction in Escherichia coli RNase P, and with the fact that cyanobacteria do not code the CCA sequence in the genome but add it posttranscriptionally. Modification of nucleotides 330-332 in the J15/16 loop of Synechocystis RNase P RNA from GGU to CCA has a modest effect on kcat for CCA-containing substrates and has no effect on cleavage-site selection. We have developed a direct physical assay of the interaction between RNase P RNA and its substrate, which was immobilized on a filter, and we have determined that Synechocystis RNase P RNA binds with better affinity the substrate lacking CCA than the substrate containing it. Our results indicate a mode of substrate binding in RNase P from cyanobacteria that is different from binding in other eubacteria and in which the 3' terminal CCA is not involved.  (+info)

(6/644) Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin.

A group of seven Sm proteins forms a complex that binds to several RNAs in metazoans. All Sm proteins contain a sequence signature, the Sm domain, also found in two yeast Sm-like proteins associated with the U6 snRNA. We have performed database searches revealing the presence of 16 proteins carrying an Sm domain in the yeast genome. Analysis of this protein family confirmed that seven of its members, encoded by essential genes, are homologues of metazoan Sm proteins. Immunoprecipitation revealed that an evolutionarily related subgroup of seven Sm-like proteins is directly associated with the nuclear U6 and pre-RNase P RNAs. The corresponding genes are essential or required for normal vegetative growth. These proteins appear functionally important to stabilize U6 snRNA. The two last yeast Sm-like proteins were not found associated with RNA, and neither was essential for vegetative growth. To investigate whether U6-associated Sm-like protein function is widespread, we cloned several cDNAs encoding homologous human proteins. Two representative human proteins were shown to associate with U6 snRNA-containing complexes. We also identified archaeal proteins related to Sm and Sm-like proteins. Our results demonstrate that Sm and Sm-like proteins assemble in at least two functionally conserved complexes of deep evolutionary origin.  (+info)

(7/644) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history.

MOTIVATION: Many computerized methods for RNA secondary structure prediction have been developed. Few of these methods, however, employ an evolutionary model, thus relevant information is often left out from the structure determination. This paper introduces a method which incorporates evolutionary history into RNA secondary structure prediction. The method reported here is based on stochastic context-free grammars (SCFGs) to give a prior probability distribution of structures. RESULTS: The phylogenetic tree relating the sequences can be found by maximum likelihood (ML) estimation from the model introduced here. The tree is shown to reveal information about the structure, due to mutation patterns. The inclusion of a prior distribution of RNA structures ensures good structure predictions even for a small number of related sequences. Prediction is carried out using maximum a posteriori estimation (MAP) estimation in a Bayesian approach. For small sequence sets, the method performs very well compared to current automated methods.  (+info)

(8/644) RNase P RNAs from some Archaea are catalytically active.

The RNA subunits of RNase Ps of Archaea and eukaryotes have been thought to depend fundamentally on protein for activity, unlike those of Bacteria that are capable of efficient catalysis in the absence of protein. Although the eukaryotic RNase P RNAs are quite different than those of Bacteria in both sequence and structure, the archaeal RNAs generally contain the sequences and structures of the bacterial, phylogenetically conserved catalytic core. A spectrum of archaeal RNase P RNAs were therefore tested for activity in a wide range of conditions. Many remain inactive in ionically extreme conditions, but catalytic activity could be detected from those of the methanobacteria, thermococci, and halobacteria. Chimeric holoenzymes, reconstituted from the Methanobacterium RNase P RNA and the Bacillus subtilis RNase P protein subunits, were functional at low ionic strength. The properties of the archaeal RNase P RNAs (high ionic-strength requirement, low affinity for substrate, and catalytic reconstitution by bacterial RNase P protein) are similar to synthetic RNase P RNAs that contain all of the catalytic core of the bacterial RNA but lack phylogenetically variable, stabilizing elements.  (+info)