The zebrafish detour gene is essential for cranial but not spinal motor neuron induction. (9/1026)

The zebrafish detour (dtr) mutation generates a novel neuronal phenotype. In dtr mutants, most cranial motor neurons, especially the branchiomotor, are missing. However, spinal motor neurons are generated normally. The loss of cranial motor neurons is not due to aberrant hindbrain patterning, failure of neurogenesis, increased cell death or absence of hh expression. Furthermore, activation of the Hh pathway, which normally induces branchiomotor neurons, fails to induce motor neurons in the dtr hindbrain. Despite this, not all Hh-mediated regulation of hindbrain development is abolished since the regulation of a neural gene by Hh is intact in the dtr hindbrain. Finally, dtr can function cell autonomously to induce branchiomotor neurons. These results suggest that detour encodes a component of the Hh signaling pathway that is essential for the induction of motor neurons in the hindbrain but not in the spinal cord and that dtr function is required for the induction of only a subset of Hh-mediated events in the hindbrain.  (+info)

Specification of distinct motor neuron identities by the singular activities of individual Hox genes. (10/1026)

Hox genes have been implicated in specifying positional values along the anteroposterior axis of the caudal central nervous system, but their nested and overlapping expression has complicated the understanding of how they confer specific neural identity. We have employed a direct gain-of-function approach using retroviral vectors to misexpress Hoxa2 and Hoxb1 outside of the normal Hox expression domains, thereby avoiding complications resulting from possible interactions with endogenous Hox genes. Misexpression of either Hoxa2 or Hoxb1 in the anteriormost hindbrain (rhombomere1, r1) leads to the generation of motor neurons in this territory, even though it is normally devoid of this cell type. These ectopic neurons have the specific identity of branchiomotor neurons and, in the case of Hoxb1-induced cells, their axons leave the hindbrain either by fasciculating with the resident cranial motor axons at isthmic (trochlear) or r2 (trigeminal) levels of the axis or via novel ectopic exit points in r1. Next, we have attempted to identify the precise branchiomotor subtypes that are generated after misexpression and our results suggest that the ectopic motor neurons generated following Hoxa2 misexpression are trigeminal-like, while those generated following Hoxb1 misexpression are facial-like. Our data demonstrate, therefore, that at least to a certain extent and for certain cell types, the singular activities of individual Hox genes (compared to a combinatorial mode of action, for example) are sufficient to impose on neuronal precursor cells the competence to generate distinctly specified cell types. Moreover, as these particular motor neuron subtypes are normally generated in the most anterior domains of Hoxa2 and Hoxb1 expression, respectively, our data support the idea that the main site of individual Hox gene action is in the anteriormost subdomain of their expression, consistent with the phenomenon of posterior dominance.  (+info)

13-cis-Retinoic acid alters neural crest cells expressing Krox-20 and Pax-2 in macaque embryos. (11/1026)

This study investigates hindbrain and associated neural crest (NCC), otocyst, and pharyngeal arch development in monkey embryos following teratogenic exposure to 13-cis-retinoic acid (cRA). cRA was orally administered (5 mg/kg) to pregnant long-tailed macaques (Macaca fascicularis) between gestational days (GD) 12 and 27. Embryos were surgically collected at desired stages during treatment, analyzed for external morphological changes, and processed for immunohistochemistry. Two transiently expressed nuclear proteins, Krox-20 and Pax-2, were used as markers for the target cellular and anatomical structures. Rhombomere (r) expression patterns of Pax-2 (r4/r6) and Krox-20 (r3/r5) were maintained after cRA treatment, but r4 and r5 were substantially reduced in size. In untreated embryos, Krox-20 immunoreactive NCC derived from r5 migrated caudally around the developing otocyst to contribute to the third pharyngeal arch mesenchyme. In cRA-treated embryos, a subpopulation of NCC rostral to the otocyst also showed Krox-20 immunoreactivity, but there was a substantial reduction in Krox-20 post-otic NCC. Pax-2 immunoreactive NCC migrating from r4 to the second pharyngeal arch were substantially reduced in numbers in treated embryos. Alteration in the otic anlage included delayed invagination, abnormal relationship with the adjacent hindbrain epithelium, and altered expression boundaries for Pax-2. cRA-associated changes in the pharyngeal arch region due to cRA included truncation of the distal portion of the first arch and reduction in the size of the second arch. These alterations in hindbrain, neural crest, otic anlage, and pharyngeal arch morphogenesis could contribute to some of the craniofacial malformations in the macaque fetus associated with exposure to cRA.  (+info)

Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. (12/1026)

Pbx/exd proteins modulate the DNA binding affinities and specificities of Hox proteins and contribute to the execution of Hox-dependent developmental programs in arthropods and vertebrates. Pbx proteins also stably heterodimerize and bind DNA with Meis and Pknox1-Prep1, additional members of the TALE (three-amino-acid loop extension) superclass of homeodomain proteins that function on common genetic pathways with a subset of Hox proteins. In this study, we demonstrated that Pbx and Meis bind DNA as heterotrimeric complexes with Hoxb1 on a genetically defined Hoxb2 enhancer, r4, that mediates the cross-regulatory transcriptional effects of Hoxb1 in vivo. The DNA binding specificity of the heterotrimeric complex for r4 is mediated by a Pbx-Hox site in conjunction with a distal Meis site, which we showed to be required for ternary complex formation and Meis-enhanced transcription. Formation of heterotrimeric complexes in which all three homeodomains bind their cognate DNA sites is topologically facilitated by the ability of Pbx and Meis to interact through their amino termini and bind DNA without stringent half-site orientation and spacing requirements. Furthermore, Meis site mutation in the Hoxb2 enhancer phenocopies Pbx-Hox site mutation to abrogate enhancer-directed expression of a reporter transgene in the murine embryonic hindbrain, demonstrating that DNA binding by all three proteins is required for trimer function in vivo. Our data provide in vitro and in vivo evidence for the combinatorial regulation of Hox and TALE protein functions that are mediated, in part, by their interdependent DNA binding activities as ternary complexes. As a consequence, Hoxb1 employs Pbx and Meis-related proteins, as a pair of essential cofactors in a higher-order molecular complex, to mediate its transcriptional effects on an endogenous Hox response element.  (+info)

Fgf8 and Gbx2 induction concomitant with Otx2 repression is correlated with midbrain-hindbrain fate of caudal prosencephalon. (13/1026)

Chick/quail transplantation experiments were performed to analyse possible factors involved in the regionalisation of the midbrain-hindbrain domain. The caudal prosomeres, expressing Otx2, were transplanted at stage HH10 into rostrocaudal levels of the midbrain-hindbrain domain, either straddling the intra-metencephalic constriction (type 1 grafts), or at rostral and medial levels of pro-rhombomere A1 (type 2 and 3 grafts, respectively); thus, in all situations, one border of the graft was in contact with the host Gbx2- and Fgf8-expressing domains. The area containing the graft, recognised by QCPN immunohistochemistry, was first analysed 48 hours after transplantation for Otx2, Gbx2, En2 and Fgf8. Although in all three situations, a large part of the graft maintained Otx2 expression, another part became Otx2 negative and was induced to express Gbx2 and Fgf8. These inductive events occurred exclusively at the interface between the Otx2-positive transplanted domain and the ipsilateral host Gbx2-positive rhombomere 1, creating a new Otx2-Gbx2 boundary within the grafted territory. In type 1 and 2 grafts, the induced Fgf8 domain is in continuity with the host Fgf8 isthmic domain, whereas for type 3 grafts, these two domains are separate. High levels of En2 expression were also induced in the area expressing Gbx2 and Fgf8, and Wnt1 and Pax2 expressions, analysed in type 3 grafts, were induced at the intragraft Otx2-Gbx2 new boundary. Moreover, at later embryonic stages, the graft developed meso-isthmo-cerebellar structures. Thus, gene expressions induced in the grafted prosencephalon not only mimicked the pattern observed in the normal midbrain-hindbrain domain, but is followed by midbrain-hindbrain cytodifferentiation, indicating that not only Fgf8 but also confrontation of Otx2 and Gbx2 may play an essential role during midbrian-hindbrain regionalisation.  (+info)

Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. (14/1026)

Segmentation of the hindbrain and branchial region is a conserved feature of head development, involving the nested expression of Hox genes. Although it is presumed that vertebrate Hox genes function as segment identifiers, responsible for mediating registration between elements of diverse embryonic origin, this assumption has remained untested. To assess this, retroviral misexpression was combined with orthotopic grafting in chick embryos to generate a mismatch in Hox coding between a specific rhombomere and its corresponding branchial arch. Rhombomere-restricted misexpression of a single gene, Hoxb1, resulted in the homeotic transformation of the rhombomere, revealed by reorganization of motor axon projections.  (+info)

The role of kreisler in segmentation during hindbrain development. (15/1026)

The mouse kreisler gene is expressed in rhombomeres (r) 5 and 6 during neural development and kreisler mutants have patterning defects in the hindbrain that are not fully understood. Here we analyzed this phenotype with a combination of genetic, molecular, and cellular marking techniques. Using Hox/lacZ transgenic mice as reporter lines and by analyzing Eph/ephrin expression, we have found that while r5 fails to form in these mice, r6 is present. This shows that kreisler has an early role in the formation of r5. We also observed patterning defects in r3 and r4 that are outside the normal domain of kreisler expression. In both heterozygous and homozygous kreisler embryos some r5 markers are induced in r3, suggesting that there is a partial change in r3 identity that is not dependent upon the loss of r5. To investigate the cellular character of r6 in kreisler embryos we performed heterotopic grafting experiments in the mouse hindbrain to monitor its mixing properties. Control experiments revealed that cells from even- or odd-numbered segments only mixed freely with themselves, but not with cells of opposite character. Transposition of cells from the r6 territory of kreisler mutants reveals that they adopt mature r6 characteristics, as they freely mix only with cells from even-numbered rhombomeres. Analysis of Phox2b expression shows that some aspects of later neurogenesis in r6 are altered, which may be associated with the additional roles of kreisler in regulating segmental identity. Together these results suggest that the formation of r6 has not been affected in kreisler mutants. This analysis has revealed phenotypic and mechanistic differences between kreisler and its zebrafish equivalent valentino. While valentino is believed to subdivide preexisting segmental units, in the mouse kreisler specifies a particular segment. The formation of r6 independent of r5 argues against a role of kreisler in prorhombomeric segmentation of the mouse hindbrain. We conclude that the mouse kreisler gene regulates multiple steps in segmental patterning involving both the formation of segments and their A-P identity.  (+info)

Expression of a novel type of classic cadherin, PB-cadherin in developing brain and limb buds. (16/1026)

PB-cadherin is a novel classic type of cadherin predominantly expressed in brain of adult rats (Sugimoto et al. [1996] J. Biol. Chem. 271:11548-11556). To examine the spatial and temporal expression of PB-cadherin during development, we isolated full-length cDNA of mouse PB-cadherin and studied its expression pattern in mouse embryos. In Northern blots, PB-cadherin mRNA was detected at 9.5 days postcoitum (dpc) onwards. Whole-mount in situ hybridization showed that PB-cadherin signals mainly occurred in developing neural tissues, including brain and spinal cord, and limb buds in the 10.5 dpc embryo. In the brain, PB-cadherin mRNA were strongly expressed in the forebrain and midbrain-hindbrain boundary region (isthmus). In isthmus, PB-cadherin expression delineated the expression area of Wnt-1, a secreted signaling molecule essential for proper cerebellum development. In the developing limb, PB-cadherin mRNA was first localized in posterior part of buds at 10.5 dpc, and was thereafter distributed in a domain around the digit rudiments. This expression pattern is similar to that of BMP-2, a secreted signalling molecule involving limb patterning and morphogenesis. These findings suggested the possibility that PB-cadherin-mediated cell-cell adhesion has a functional role in pattern formation and morphogenesis of mouse embryonic brain and limb. Dev Dyn 1999;215:206-214.  (+info)