Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. (49/1026)

We report that the zebrafish mutation soulless, in which the development of locus coeruleus (LC) noradrenergic (NA) neurons failed to occur, disrupts the homeodomain protein Phox2a. Phox2a is not only necessary but also sufficient to induce Phox2b+ dopamine-beta-hydroxylase+ and tyrosine hydroxylase+ NA neurons in ectopic locations. Phox2a is first detected in LC progenitors in the dorsal anterior hindbrain, and its expression there is dependent on FGF8 from the mid/hindbrain boundary and on optimal concentrations of BMP signal from the epidermal ectoderm/future dorsal neural plate junction. These findings suggest that Phox2a coordinates the specification of LC in part through the induction of Phox2b and in response to cooperating signals that operate along the mediolateral and anteroposterior axes of the neural plate.  (+info)

Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. (50/1026)

Long distance cell migration occurs throughout the developing CNS, but the underlying cellular and molecular mechanisms are poorly understood. We show that the directed circumferential migration of basilar pontine neurons from their origin in the neuroepithelium of the dorsal hindbrain to the ventral midline involves the extension of long (>1 mm) leading processes, which marker analyses suggest are molecularly distinct from axons. In vivo analysis of knockout mice implicates the axonal chemoattractant netrin-1, functioning via its receptor Deleted in Colorectal Cancer (DCC), in attracting the leading process to the ventral midline. Direct evidence for this chemoattractant mechanism is provided, using explant cultures and time-lapse analysis in vitro. Our results demonstrate the attraction of migrating neurons in the mammalian brain by an axon guidance molecule and the chemotactic responsiveness of their leading processes.  (+info)

Development and role of GABA(A) receptor-mediated synaptic potentials during swimming in postembryonic Xenopus laevis tadpoles. (51/1026)

We have investigated the contribution of GABA(A) receptor activation to swimming in Xenopus tadpoles during the first day of postembryonic development. Around the time of hatching stage (37/8), bicuculline (10-50 microM) causes a decrease in swim episode duration and cycle period, suggesting that GABA(A) receptor activation influences embryonic swimming. Twenty-four hours later, at stage 42, GABA(A) receptor activation plays a more pronounced role in modulating larval swimming activity. Bicuculline causes short, intense swim episodes with increased burst durations and decreased cycle periods and rostrocaudal delays. Conversely, the allosteric agonist, 5beta-pregnan-3alpha-ol-20-one (1-10 microM) or the uptake inhibitor, nipecotic acid (200 microM) cause slow swimming with reduced burst durations and increased cycle periods. These effects appear to be mainly the result of GABA release from the spinal terminals of midhindbrain reticulospinal neurons but may also involve spinal GABAergic neurons. Intracellular recordings were made using KCl electrodes to reverse the sign and enhance the amplitude of chloride-dependent inhibitory postsynaptic potentials (IPSPs). Recordings from larval motoneurons in the presence of strychnine (1-5 microM), to block glycinergic IPSPs, provided no evidence for any GABAergic component to midcycle inhibition. GABA potentials were observed during episodes, but they were not phase-locked to the swimming rhythm. Bicuculline (10-50 microM) abolished these sporadic potentials and caused an apparent decrease in the level of tonic depolarization during swimming activity and an increase in spike height. Finally, in most larval preparations, GABA potentials were observed at the termination of swimming. In combination with the other evidence, our data suggest that midhindbrain reticulospinal neurons become involved in an intrinsic pathway that can prematurely terminate swim episodes. Thus during the first day of larval development, endogenous activation of GABA(A) receptors plays an increasingly important role in modulating locomotion, and GABAergic neurons become involved in an intrinsic descending pathway for terminating swim episodes.  (+info)

A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. (52/1026)

Polymorphic regions consisting of a variable number of tandem repeats within intron 2 of the gene coding for the serotonin transporter protein 5-HTT have been associated with susceptibility to affective disorders. We have cloned two of these intronic polymorphisms, Stin2.10 and Stin2.12, into an expression vector containing a heterologous minimal promoter and the bacterial LacZ reporter gene. These constructs were then used to produce transgenic mice. In embryonic day 10.5 embryos, both Stin2.10 and Stin2.12 produced consistent beta-galactosidase expression in the embryonic midbrain, hindbrain, and spinal cord floor plate. However, we observed that the levels of beta-galactosidase expression produced by both the Stin2.10 and Stin2.12 within the rostral hindbrain differed significantly at embryonic day 10.5. Our data suggest that these polymorphic variable number of tandem repeats regions act as transcriptional regulators and have allele-dependent differential enhancer-like properties within an area of the hindbrain where the 5-HTT gene is known to be transcribed at this stage of development.  (+info)

Nerve growth factor (NGF) augments cortical and hippocampal cholinergic functioning after p75NGF receptor-mediated deafferentation but impairs inhibitory avoidance and induces fear-related behaviors. (53/1026)

Nerve growth factor (NGF) enhances cholinergic functioning in animals with a compromised cholinergic basal forebrain (CBF). Immunotoxic lesions targeting low-affinity NGF receptor (p75NGF receptor)-bearing CBF neurons provide a selective model for testing the effects of NGF on residual cholinergic neurons. Rats received PBS or the immunotoxin 192IgG-saporin (192Sap) intracerebroventricularly at two doses (1 or 2.7 microg) known to produce different degrees of cholinergic deficit. Seven weeks after lesioning, half of each group received either NGF or cytochrome c intracerebroventricularly for 7 weeks. The two doses of 192Sap produced 50 and 80% depletions of choline acetyltransferase (ChAT) activity in the neocortex and hippocampus. NGF produced the greatest increase in ChAT activity in controls, intermediate in low-lesioned, and smallest in highly lesioned animals. NGF-treated animals showed reduced weight gain, hyper-responsiveness to acoustic stimuli, and decreased inhibitory avoidance. Although general motor behavior was affected by neither 192Sap nor NGF in an open field task, highly lesioned rats took longer to reach the platform during water maze testing. Impaired spatial orientation in finding a hidden platform at the previously acquired position was mitigated by NGF. Hypertrophic changes of residual CBF neurons, Schwann cell hyperplasia, and aberrant axonal sprouting around the medulla were observed in NGF-treated animals only, independent of the preexisting lesion. Our results indicate that NGF has a limited capacity to enhance functioning of residual CBF neurons. More importantly, NGF augmented fear-related behaviors and adverse neuroproliferative changes that may restrict its therapeutic use.  (+info)

Two Pax2/5/8-binding sites in Engrailed2 are required for proper initiation of endogenous mid-hindbrain expression. (54/1026)

During early brain development mouse Engrailed2 (En2) is expressed in a broad band across most of the mid-hindbrain region. Evidence from gene expression data, promoter analysis in transgenic mice and mutant phenotype analysis in mice and zebrafish has suggested that Pax2, 5 and 8 play a critical role in regulating En2 mid-hindbrain expression. Previously, we identified two Pax2/5/8-binding sites in a 1.0 kb En2 enhancer fragment that is sufficient to directed reporter gene expression to the early mid-hindbrain region and showed that the two Pax2/5/8-binding sites are essential for the mid-hindbrain expression in transgenic mice. In the present study we have examined the functional requirements of these two Pax2/5/8-binding sites in the context of the endogenous En2 gene for directing mid-hindbrain expression. The two Pax2/5/8-binding sites were deleted from the En2 locus and replaced with the bacterial neo gene by homologous recombination in mouse embryonic stem cells. After transmitting the mutation into mice, the neo gene was removed by breeding with transgenic mice expressing cre from a CMV promoter. Embryos homozygous for this En2 Pax2/5/8-binding site deletion mutation had a mild reduction in En2 expression in the presumptive mid-hindbrain region at the 5-7 somite stage, when En2 expression is normally initiated. However, from embryonic day 9.0 onwards, the mutant embryos showed En2 expression indistinguishable from that seen in wild type embryos. Furthermore, the mutants did not show the cerebellar defect seen in mice with a null mutation in En2. This result demonstrates that the two Pax2/5/8-binding sites that were deleted, while being required for mid-hindbrain expression in the context of a 1.0 kb En2 enhancer, are only required for proper initiation of expression of the endogenous En2 gene. Interestingly, a comparison of the lacZ RNA and protein expression patterns directed by the 1.0 kb enhancer fragment revealed that lacZ protein was acting as a lineage marker in the mid-hindbrain region by persisting longer than the mRNA. The transgene expression directed by the 1.0 kb enhancer fragment therefore does not mimic the entire broad domain of En2 expression. Taken together, these two studies demonstrate that DNA binding sites in addition to the two Pax2/5/8-binding sites must be necessary for En2 mid-hindbrain expression.  (+info)

Retinoic acid synthesis and hindbrain patterning in the mouse embryo. (55/1026)

Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444-448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2-/- embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.  (+info)

Nab proteins mediate a negative feedback loop controlling Krox-20 activity in the developing hindbrain. (56/1026)

The developing vertebrate hindbrain is transiently subdivided along the anterior-posterior axis into metameric units, called rhombomeres (r). These segments constitute units of lineage restriction and display specific gene expression patterns. The transcription factor gene Krox-20 is restricted to r3 and r5, and is required for the development of these rhombomeres. We present evidence that Krox-20 transcriptional activity is under the control of a negative feedback mechanism in the hindbrain. This regulatory loop involves two closely related proteins, Nabl and Nab2, previously identified as antagonists of Krox-20 transcriptional activity in cultured cells. Here we show that in the mouse hindbrain, Nab1 and Nab2 recapitulate the Krox-20 expression pattern and that their expression is dependent on Krox-20 function. Furthermore, misexpression of Nab1 or Nab2 in zebrafish embryos leads to alterations in the expression patterns of several hindbrain markers, consistent with an inhibition of Krox-20 activity. Taken together, these data indicate that Krox-20 positively regulates the expression of its own antagonists and raise the possibility that this negative feedback regulatory loop may play a role in the control of hindbrain development.  (+info)