c-Irx2 expression reveals an early subdivision of the neural plate in the chick embryo. (33/1026)

We have cloned c-Irx2, a chick homologue of the Xiro2 and mIrx2 genes and a new member of the Iroquois family of homeodomain-containing transcription factors. Strikingly, c-Irx2 expression reveals an early subdivision of the neural plate at late primitive streak stages which later transiently resolves to a single stripe within the developing hindbrain corresponding to rhombomere 1.  (+info)

Compartmentalized expression of zebrafish ten-m3 and ten-m4, homologues of the Drosophila ten(m)/odd Oz gene, in the central nervous system. (34/1026)

Zebrafish ten-m3 and ten-m4 encode proteins highly similar to the product of Drosophila pair-rule gene ten(m)/odd Oz (odz). Their products contain eight epidermal growth factor (EGF)-like repeats that resemble mostly those of the extracellular matrix molecule tenascin. During segmentation period, ten-m3 is expressed in the somites, notochord, pharyngeal arches, and the brain, while expression of ten-m4 is mainly restricted to the brain. In the developing brain, ten-m3 and ten-m4 expression delineates several compartments. Interestingly, ten-m3 and ten-m4 show expression patterns complementary to each other in the developing forebrain and midbrain along both rostrocaudal and dorsoventral axes, depending on developmental stages and locations.  (+info)

Neurologic complications in children with enterovirus 71 infection. (35/1026)

BACKGROUND: Enterovirus 71 infection causes hand-foot-and-mouth disease in young children, which is characterized by several days of fever and vomiting, ulcerative lesions in the oral mucosa, and vesicles on the backs of the hands and feet. The initial illness resolves but is sometimes followed by aseptic meningitis, encephalomyelitis, or even acute flaccid paralysis similar to paralytic poliomyelitis. METHODS: We describe the neurologic complications associated with the enterovirus 71 epidemic that occurred in Taiwan in 1998. At three major hospitals we identified 41 children with culture-confirmed enterovirus 71 infection and acute neurologic manifestations. Magnetic resonance imaging (MRI) was performed in 4 patients with acute flaccid paralysis and 24 with rhombencephalitis. RESULTS: The mean age of the patients was 2.5 years (range, 3 months to 8.2 years). Twenty-eight patients had hand-foot-and-mouth disease (68 percent), and 6 had herpangina (15 percent). The other seven patients had no skin or mucosal lesions. Three neurologic syndromes were identified: aseptic meningitis (in 3 patients); brain-stem encephalitis, or rhombencephalitis (in 37); and acute flaccid paralysis (in 4), which followed rhombencephalitis in 3 patients. In 20 patients with rhombencephalitis, the syndrome was characterized by myoclonic jerks and tremor, ataxia, or both (grade I disease). Ten patients had myoclonus and cranial-nerve involvement (grade II disease). In seven patients the brain-stem infection produced transient myoclonus followed by the rapid onset of respiratory distress, cyanosis, poor peripheral perfusion, shock, coma, loss of the doll's eye reflex, and apnea (grade III disease); five of these patients died within 12 hours after admission. In 17 of the 24 patients with rhombencephalitis who underwent MRI, T2-weighted scans showed high-intensity lesions in the brain stem, most commonly in the pontine tegmentum. At follow-up, two of the patients with acute flaccid paralysis had residual limb weakness, and five of the patients with rhombencephalitis had persistent neurologic deficits, including myoclonus (in one child), cranial-nerve deficits (in two), and ventilator-dependent apnea (in two). CONCLUSIONS: In the 1998 enterovirus 71 epidemic in Taiwan, the chief neurologic complication was rhombencephalitis, which had a fatality rate of 14 percent. The most common initial symptoms were myoclonic jerks, and MRI usually showed evidence of brainstem involvement.  (+info)

Bidirectional signals establish boundaries. (36/1026)

Recent studies have shown that the formation of boundaries between the segments - rhombomeres - of the vertebrate hindbrain depends on bidirectional signalling between neighbouring cells. This signalling is mediated by Eph receptors and their ligands, which has been found to restrict cell intermingling in vitro.  (+info)

Intrauterine gene transfer: gestational stage-specific gene delivery in mice. (37/1026)

Intrauterine gene transfer in mice by intraplacental microinjection of recombinant adenoviral or retroviral vectors carrying beta-galactosidase (beta-gal) reporter gene was analyzed in relation to gestational stage, viral titer and promoters. After injections of viral vectors on days 9.5, 11.5 or 14.5 post coitum (p.c.), embryos, fetuses and adult animals were analyzed for beta-gal expression on days 13.5 p.c., 18.5 p.c. and at 2 months of age, respectively. Injection of adenoviral vectors on day 9.5 or day 11.5 p.c. resulted in high beta-gal expression in the heart or liver, respectively. Injection on either day also gave expression in other tissues including vasculature and hindbrain. This temporal pattern of adenoviral transduction correlated with the expression level of integrin beta3 subunit, which is known to be a component involved in adenoviral transduction. Adenovirus-mediated intrauterine gene transfer resulted in persistent beta-gal expression in multiple cell foci in the liver and hearts of 2-month-old adult animals treated in utero, indicating stable integration of the transgene into the host cell genome at a low frequency. Although at low efficiency, injection of retroviral vector on day 9.5 and 11.5 p.c. resulted in beta-gal expression in embryonic liver, while day 9.5 p.c. injection resulted in persistent beta-gal expression in 2-month-old adult heart. This is the first study to show gestational stage-specific gene transfer via intraplacental microinjection of adenoviral vectors.  (+info)

FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. (38/1026)

The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  (+info)

Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. (39/1026)

The analysis of mice mutant for both Hoxa1 and Hoxb1 suggests that these two genes function together to pattern the hindbrain. Separately, mutations in Hoxa1 and Hoxb1 have profoundly different effects on hindbrain development. Hoxa1 mutations disrupt the rhombomeric organization of the hindbrain, whereas Hoxb1 mutations do not alter the rhombomeric pattern, but instead influence the fate of cells originating in rhombomere 4. We suggest that these differences are not the consequences of different functional roles for these gene products, but rather reflect differences in the kinetics of Hoxa1 and Hoxb1 gene expression. In strong support of the idea that Hoxa1 and Hoxb1 have overlapping functions, Hoxa1/Hoxb1 double mutant homozygotes exhibit a plethora of defects either not seen, or seen only in a very mild form, in mice mutant for only Hoxa1 or Hoxb1. Examples include: the loss of both rhombomeres 4 and 5, the selective loss of the 2(nd) branchial arch, and the loss of most, but not all, 2(nd) branchial arch-derived tissues. We suggest that the early role for both of these genes in hindbrain development is specification of rhombomere identities and that the aberrant development of the hindbrain in Hoxa1/Hoxb1 double mutants proceeds through two phases, the misspecification of rhombomeres within the hindbrain, followed subsequently by size regulation of the misspecified hindbrain through induction of apoptosis.  (+info)

Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. (40/1026)

Mouse fetuses carrying targeted inactivations of both the RAR(&agr;) and the RARbeta genes display a variety of malformations in structures known to be partially derived from the mesenchymal neural crest originating from post-otic rhombomeres (e.g. thymus and great cephalic arteries) (Ghyselinck, N., Dupe, V., Dierich, A., Messaddeq, N., Garnier, J.M., Rochette-Egly, C., Chambon, P. and Mark M. (1997). Int. J. Dev. Biol. 41, 425-447). In a search for neural crest defects, we have analysed the rhombomeres, cranial nerves and pharyngeal arches of these double null mutants at early embryonic stages. The mutant post-otic cranial nerves are disorganized, indicating that RARs are involved in the patterning of structures derived from neurogenic neural crest, even though the lack of RARalpha and RARbeta has no detectable effect on the number and migration path of neural crest cells. Interestingly, the double null mutation impairs early developmental processes known to be independent of the neural crest e.g., the initial formation of the 3rd and 4th branchial pouches and of the 3rd, 4th and 6th arch arteries. The double mutation also results in an enlargement of rhombomere 5, which is likely to be responsible for the induction of supernumerary otic vesicles, in a disappearance of the rhombomere 5/6 boundary, and in profound alterations of rhombomere identities. In the mutant hindbrain, the expression domain of kreisler is twice its normal size and the caudal stripe of Krox-20 extends into the presumptive rhombomeres 6 and 7 region. In this region, Hoxb-1 is ectopically expressed, Hoxb-3 is ectopically up-regulated and Hoxd-4 expression is abolished. These data, which indicate that retinoic acid signaling through RARalpha and/or RARbeta is essential for the specification of rhombomere identities and for the control of caudal hindbrain segmentation by restricting the expression domains of kreisler and of Krox-20, also strongly suggest that this signaling plays a crucial role in the posteriorization of the hindbrain neurectoderm.  (+info)