Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. (41/2130)

The small GTPase Rho, which regulates a variety of cell functions, also serves as a specific substrate for bacterial toxins. Here we demonstrate that Bordetella dermonecrotizing toxin (DNT) catalyzes cross-linking of Rho with ubiquitous polyamines such as putrescine, spermidine and spermine. Mass spectrometric analyses revealed that the cross-link occurred at Gln63, which had been reported to be deamidated by DNT in the absence of polyamines. Rac1 and Cdc42, other members of the Rho family GTPases, were also polyaminated by DNT. The polyamination, like the deamidation, markedly reduced the GTPase activity of Rho without affecting its GTP-binding activity, indicating that polyaminated Rho behaves as a constitutively active analog. Moreover, polyamine-linked Rho, even in the GDP-bound form, associated more effectively with its effector ROCK than deamidated Rho in the GTP-bound form and, when microinjected into cells, induced the anomalous formation of stress fibers indistinguishable from those seen in DNT-treated cells. The results imply that the polyamine-linked Rho, transducing signals to downstream ROCK in a novel GTP-independent manner, plays an important role in DNT cell toxicity.  (+info)

Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. (42/2130)

We have examined the role of the mouse Diaphanous-related formin (DRF) Rho GTPase binding proteins, mDia1 and mDia2, in cell regulation. The DRFs are required for cytokinesis, stress fiber formation, and transcriptional activation of the serum response factor (SRF). 'Activated' mDia1 and mDia2 variants, lacking their GTPase binding domains, cooperated with Rho-kinase or ROCK to form stress fibers but independently activated SRF. Src tyrosine kinase associated and co-localized with the DRFs in endosomes and in mid-bodies of dividing cells. Inhibition of Src also blocked cytokinesis, SRF induction by activated DRFs, and cooperative stress fiber formation with active ROCK. Our results show that the DRF proteins couple Rho and Src during signaling and the regulation of actin dynamics.  (+info)

Molecular decipherment of Rho effector pathways regulating tight-junction permeability. (43/2130)

We reported recently that the activation of RhoA induced an increase in transepithelial electrical resistance (TER). To clarify effectors of Rho for this RhoA-induced regulation of tight-junction permeability, we introduced two effector-loop mutants of constitutively active RhoA(V14), RhoA(V14/L40) and RhoA(V14/C42), into Mardin-Darby canine kidney cells in an isopropyl beta-D-thiogalactoside-inducible expression system. RhoA(V14) and the two effector-loop mutants interacted in vitro with the Rho-binding domain of Rho-associated kinase, ROKalpha. Next we examined two parameters of Rho functions, stress-fibre formation and TER elevation, induced by RhoA(V14). Stress-fibre formation was induced by RhoA(V14/C42) but not by RhoA(V14/L40). On the other hand, TER elevation was induced by neither RhoA(V14/L40) nor RhoA(V14/C42). RhoA-associated kinase inhibitor, Y-27632, inhibited both stress-fibre formation and TER elevation induced by RhoA(V14). These results demonstrated that RhoA-induced regulation of tight-junction permeability is mediated by Rho-associated kinase and at least one other unidentified effector, the coupling to RhoA being disrupted by mutation at position 40 or 42 in the effector loop.  (+info)

Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. (44/2130)

BACKGROUND: We recently demonstrated that the Rho-kinase-mediated pathway plays an important role for coronary artery spasm in our porcine model with interleukin-1beta (IL-1beta). In this study, we examined whether or not Rho-kinase is upregulated at the spastic site and if so, how it induces vascular smooth muscle hypercontraction. METHODS AND RESULTS: Segments of the left porcine coronary artery were chronically treated from the adventitia with IL-1beta-bound microbeads. Two weeks after the operation, as reported previously, intracoronary serotonin repeatedly induced coronary hypercontractions at the IL-1beta-treated site both in vivo and in vitro, which were markedly inhibited by Y-27632, one of the specific inhibitors of Rho-kinase. Reverse transcription-polymerase chain reaction analysis demonstrated that the expression of Rho-kinase mRNA was significantly increased in the spastic compared with the control segment. Western blot analysis showed that during the serotonin-induced contractions, the extent of phosphorylation of the myosin-binding subunit of myosin phosphatase (MBS), one of the major substrates of Rho-kinase, was significantly greater in the spastic than in the control segment and that the increase in MBS phosphorylations was also markedly inhibited by Y-27632. There was a highly significant correlation between the extent of MBS phosphorylations and that of contractions. CONCLUSIONS: These results indicate that Rho-kinase is upregulated at the spastic site and plays a key role in inducing vascular smooth muscle hypercontraction by inhibiting myosin phosphatase through the phosphorylation of MBS in our porcine model.  (+info)

Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. (45/2130)

Myosin light chain phosphatase (MLCP) plays a pivotal role in smooth muscle contraction by regulating Ca(2+) sensitivity of myosin light chain phosphorylation. A smooth muscle phosphoprotein called CPI-17 specifically and potently inhibits MLCP in vitro and in situ and is activated when phosphorylated at Thr-38, which increases its inhibitory potency 1000-fold. We produced a phosphospecific antibody for this site in CPI-17 and used it to study in situ phosphorylation of endogenous CPI-17 in arterial smooth muscle in response to agonist stimulation. In the intact femoral artery, CPI-17 phosphorylation was negligible at the resting state and was not increased during contraction induced by K(+) depolarization. The Ca(2+)-sensitizing agonists histamine and phenylephrine induced nearly equivalent contractions, but histamine generated significantly higher levels of CPI-17 phosphorylation. In alpha-toxin-permeabilized strips at pCa 6.7, contractile force and CPI-17 phosphorylation were proportional in response to histamine, guanosine 5'-O-(gamma-thiotriphosphate), and histamine plus guanyl-5'-yl thiophosphate, implying that histamine increased CPI-17 phosphorylation through activation of G proteins. Inhibitors of Rho-kinase (Y27632) and protein kinase C (PKC; GF109203X) reduced contraction and CPI-17 phosphorylation in parallel, suggesting that CPI-17 functions downstream of Rho kinases and PKC. The results show that agonists such as histamine signal through phosphorylation of CPI-17 to produce Ca(2+) sensitization of smooth muscle contraction.  (+info)

Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase. (46/2130)

The serine/threonine kinase Rho-kinase was recently identified as a downstream effector of the small GTPase Rho, mediating effects of Rho on the actin cytoskeleton. Also phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) has been implicated in the regulation of actin polymerization. As the synthesis of PI(4,5)P(2) has been suggested to be affected by Rho proteins, we investigated whether Rho-kinase is involved in the control of PI(4,5)P(2) levels. Overexpression of RhoA in HEK-293 cells increased phosphatidylinositol 4-phosphate (PI4P) 5-kinase activity and concomitantly enhanced cellular PI(4,5)P(2) levels, whereas overexpression of the Rho-inactivating C3 transferase decreased both PI4P 5-kinase activity and PI(4,5)P(2) levels. These effects of RhoA could be mimicked by overexpression of wild-type Rho-kinase and of the constitutively active catalytic domain of Rho-kinase, Rho-kinase-CAT. In contrast, a kinase-deficient mutant of Rho-kinase had no effect on PI4P 5-kinase activity. Importantly, the increase in PI4P 5-kinase activity and PI(4,5)P(2) levels by wild-type Rho-kinase, but not by Rho-kinase-CAT, was completely prevented by coexpression of C3 transferase, indicating that the effect of Rho-kinase was under the control of endogenous Rho. In cell lysates, addition of recombinant RhoA and Rho-kinase-CAT stimulated PI4P 5-kinase activity. Finally, the increase in PI(4,5)P(2) levels induced by both Rho-kinase-CAT and RhoA was reversed by the Rho-kinase inhibitor HA-1077. Our data suggest that Rho-kinase is involved in the Rho-controlled synthesis of PI(4,5)P(2) by PI4P 5-kinase.  (+info)

Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. (47/2130)

The ephrins, ligands of Eph receptor tyrosine kinases, have been shown to act as repulsive guidance molecules and to induce collapse of neuronal growth cones. For the first time, we show that the ephrin-A5 collapse is mediated by activation of the small GTPase Rho and its downstream effector Rho kinase. In ephrin-A5-treated retinal ganglion cell cultures, Rho was activated and Rac was downregulated. Pretreatment of ganglion cell axons with C3-transferase, a specific inhibitor of the Rho GTPase, or with Y-27632, a specific inhibitor of the Rho kinase, strongly reduced the collapse rate of retinal growth cones. These results suggest that activation of Rho and its downstream effector Rho kinase are important elements of the ephrin-A5 signal transduction pathway.  (+info)

Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. (48/2130)

Y-27632 [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide++ + dihydrochloride] is widely used as a specific inhibitor of the Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) family of protein kinases. This study examined the inhibition mechanism and profile of actions of Y-27632 and a related compound, Y-30141 [(+)-(R)-trans- 4-(1-aminoethyl)-N-(1H-pyrrolo[2, 3-b]pyridin-4-yl)cyclohexan-ecarboxamide dihydrochloride]. Y-27632 and Y-30141 inhibited the kinase activity of both ROCK-I and ROCK-II in vitro, and this inhibition was reversed by ATP in a competitive manner. This suggests that these compounds inhibit the kinases by binding to the catalytic site. Their affinities for ROCK kinases as determined by K(i) values were at least 20 to 30 times higher than those for two other Rho effector kinases, citron kinase and protein kinase PKN. [(3)H]Y-30141 was taken up by cells in a temperature- and time-dependent and saturable manner, and this uptake was competed with unlabeled Y-27632. No concentrated accumulation was found, suggesting that the uptake is a carrier-mediated facilitated diffusion. Y-27632 abolished stress fibers in Swiss 3T3 cells at 10 microM, but the G(1)-S phase transition of the cell cycle and cytokinesis were little affected at this concentration. Y-30141 was 10 times more potent than Y-27632 in inhibiting the kinase activity and stress fiber formation, and it caused significant delay in the G(1)-S transition and inhibition of cytokinesis at 10 microM.  (+info)