Thermostability reinforcement through a combination of thermostability-related mutations of N-carbamyl-D-amino acid amidohydrolase. (1/1949)

For the improvement of N-carbamyl-D-amino acid amidohydrolase (DCase), which can be used for the industrial production of D-amino acids, the stability of DCase from Agrobacterium sp. KNK712 was improved through various combinations of thermostability-related mutations. The thermostable temperature (defined as the temperature on heat treatment for 10 min that caused a decrease in the DCase activity of 50%) of the enzyme which had three amino acids, H57Y, P203E, and V236A, replaced was increased by about 19 degrees C. The mutant DCase, designated as 455M, was purified and its enzymatic properties were studied. The enzyme had highly increased stability against not only temperature but also pH, the optimal temperature of the enzyme being about 75 degrees C. The substrate specificity of the enzyme for various N-carbamyl-D-amino acids was changed little in comparison with that of the native enzyme. Enzymochemical parameters were also measured.  (+info)

Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. (2/1949)

We mutagenized Sinorhizobium fredii HH103-1 with Tn5-B20 and screened about 2,000 colonies for increased beta-galactosidase activity in the presence of the flavonoid naringenin. One mutant, designated SVQ287, produces lipochitooligosaccharide Nod factors (LCOs) that differ from those of the parental strain. The nonreducing N-acetylglucosamine residues of all of the LCOs of mutant SVQ287 lack fucose and 2-O-methylfucose substituents. In addition, SVQ287 synthesizes an LCO with an unusually long, C20:1 fatty acyl side chain. The transposon insertion of mutant SVQ287 lies within a 1.1-kb HindIII fragment. This and an adjacent 2.4-kb HindIII fragment were sequenced. The sequence contains the 3' end of noeK, nodZ, and noeL (the gene interrupted by Tn5-B20), and the 5' end of nolK, all in the same orientation. Although each of these genes has a similarly oriented counterpart on the symbiosis plasmid of the broad-host-range Rhizobium sp. strain NGR234, there are significant differences in the noeK/nodZ intergenic region. Based on amino acid sequence homology, noeL encodes GDP-D-mannose dehydratase, an enzyme involved in the synthesis of GDP-L-fucose, and nolK encodes a NAD-dependent nucleotide sugar epimerase/dehydrogenase. We show that expression of the noeL gene is under the control of NodD1 in S. fredii and is most probably mediated by the nod box that precedes nodZ. Transposon insertion into neoL has two impacts on symbiosis with Williams soybean: nodulation rate is reduced slightly and competitiveness for nodulation is decreased significantly. Mutant SVQ287 retains its ability to form nitrogen-fixing nodules on other legumes, but final nodule number is attenuated on Cajanus cajan.  (+info)

The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. (3/1949)

The nodulation factors (Nod factors) of Rhizobium etli and R. loti carry a 4-O-acetyl-L-fucosyl group at the reducing end. It has been claimed, based on sequence analysis, that NolL from R. loti participates in the 4-O-acetylation of the fucosyl residue of the Nod factors, as an acetyl-transferase (D. B. Scott, C. A. Young, J. M. Collins-Emerson, E. A. Terzaghi, E. S. Rockman, P. A. Lewis, and C. E. Pankhurst. Mol. Plant-Microbe Interact. 9:187-197, 1996). Further support for this hypothesis was obtained by studying the production of Nod factors in an R. etli nolL::Km mutant. Chromatographic and mass spectrometry analysis of the Nod factors produced by this strain showed that they lack the acetyl-fucosyl substituent, having a fucosyl group instead. Acetyl-fucosylation was restored upon complementation with a wild-type nolL gene. These results indicate that the nolL gene determines 4-O-acetylation of the fucosyl residue in Nod factors. Analysis of the predicted NolL polypeptide suggests a transmembranal location and that it belongs to the family of integral membrane transacylases (J. M. Slauch, A. A. Lee, M. J. Mahan, and J. J. Mekalanos. J. Bacteriol. 178:5904-5909, 1996). NolL from R. loti was also proposed to function as a transporter; our results show that NolL does not determine a differential secretion of Nod factors from the cell. We also performed plant assays that indicate that acetylation of the fucose conditions efficient nodulation by R. etli of some Phaseolus vulgaris cultivars, as well as of an alternate host (Vigna umbellata).  (+info)

Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. (4/1949)

Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.  (+info)

Sequence and molecular analysis of the Rhizobium etli glsA gene, encoding a thermolabile glutaminase. (5/1949)

We sequenced a 2.1 kb fragment of DNA carrying the structural glsA gene, which codes for the Rhizobium etli thermolabile glutaminase (A). The glsA gene complements the R. etli LM16 mutant that lacks glutaminase A activity, and is expressed in the heterologous host Sinorhizobium meliloti. The deduced amino acid sequence consists of 309 residues, with a calculated molecular mass of 33 kDa. The amino acid sequence shares 53% and 43% identity with two hypothetical glutaminases of E. coli; 42% identity with liver-type; 38% identity with kidney-type glutaminase; 41% and 40% identity hypothetical glutaminases of Bacillus subtilis; and 41% and 37% identity with two putative glutaminases of Caenorhabditis elegans. The glsA gene represents the first glutaminase gene cloned and sequenced in prokaryotes.  (+info)

Isolation and characterization of the catalase gene from Rhizobium sp. SNU003, a root nodule symbiont of Canavalia lineata. (6/1949)

A catalase gene from Rhizobium sp. SNU003, a root nodule symbiont of Canavalia lineata, was cloned and its nucleotide sequence was determined. The Rhizobium DNA of about 280 bp was amplified using two PCR primers synthesized from the conserved sequences of the type I catalase gene. The nucleotide sequence of the amplified fragment revealed three regions that were conserved in the catalase, showing it as being part of the catalase gene. A genomic Southern hybridization using this fragment as a probe showed that the 5.5 kb PstI, 1.8 kb EcoRI, and 0.7 kb StyI fragments hybridized strongly with the probe. The Rhizobium genomic library constructed into the EMBL3 vector was screened, and one catalase clone was selected. The nucleotide sequence of the 5.5 kb PstI fragment from the clone revealed an open reading frame of 1455 bp, encoding a polypeptide of 485 amino acids with a molecular mass of 54,958 Da and a pI of 6.54. The predicted amino acid sequence of the catalase is 66.3% identical to that of Bacteroides fragilis, but was only 53.3% identical to the Rhizobium meliloti catalase.  (+info)

Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. (7/1949)

Genetically, Rhizobium sp. strain NGR234 and R. fredii USDA257 are closely related. Small differences in their nodulation genes result in NGR234 secreting larger amounts of more diverse lipo-oligosaccharidic Nod factors than USDA257. What effects these differences have on nodulation were analyzed by inoculating 452 species of legumes, representing all three subfamilies of the Leguminosae, as well as the nonlegume Parasponia andersonii, with both strains. The two bacteria nodulated P. andersonii, induced ineffective outgrowths on Delonix regia, and nodulated Chamaecrista fasciculata, a member of the only nodulating genus of the Caesalpinieae tested. Both strains nodulated a range of mimosoid legumes, especially the Australian species of Acacia, and the tribe Ingeae. Highest compatibilities were found with the papilionoid tribes Phaseoleae and Desmodieae. On Vigna spp. (Phaseoleae), both bacteria formed more effective symbioses than rhizobia of the "cowpea" (V. unguiculata) miscellany. USDA257 nodulated an exact subset (79 genera) of the NGR234 hosts (112 genera). If only one of the bacteria formed effective, nitrogen-fixing nodules it was usually NGR234. The only exceptions were with Apios americana, Glycine max, and G. soja. Few correlations can be drawn between Nod-factor substituents and the ability to nodulate specific legumes. Relationships between the ability to nodulate and the origin of the host were not apparent. As both P. andersonii and NGR234 originate from Indonesia/Malaysia/Papua New Guinea, and NGR234's preferred hosts (Desmodiinae/Phaseoleae) are largely Asian, we suggest that broad host range originated in Southeast Asia and spread outward.  (+info)

Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. (8/1949)

TraR is an Agrobacterium transcriptional regulator whose activity requires the pheromone N-3-oxooctanoyl-L-homoserine lactone. TraR was purified as a complex with the pheromone and contained one pheromone molecule per protein monomer. TraR-pheromone complexes bound to a single DNA site and activated two promoters that flank this site. Promoter expression was elevated 30-fold by using a supercoiled template. Pheromone binding increased the affinity of TraR for this binding site. Pheromone also increased TraR abundance in vivo by causing a 20-fold decrease in TraR turnover rates.  (+info)