Loading...
(1/55562) Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.

ATP-sensitive potassium (K-ATP) channels couple the metabolic state to cellular excitability in various tissues. Several isoforms of the K-ATP channel subunits, the sulfonylurea receptor (SUR) and inwardly rectifying K channel (Kir6.X), have been cloned, but the molecular composition and functional diversity of native neuronal K-ATP channels remain unresolved. We combined functional analysis of K-ATP channels with expression profiling of K-ATP subunits at the level of single substantia nigra (SN) neurons in mouse brain slices using an RT-multiplex PCR protocol. In contrast to GABAergic neurons, single dopaminergic SN neurons displayed alternative co-expression of either SUR1, SUR2B or both SUR isoforms with Kir6.2. Dopaminergic SN neurons expressed alternative K-ATP channel species distinguished by significant differences in sulfonylurea affinity and metabolic sensitivity. In single dopaminergic SN neurons, co-expression of SUR1 + Kir6.2, but not of SUR2B + Kir6.2, correlated with functional K-ATP channels highly sensitive to metabolic inhibition. In contrast to wild-type, surviving dopaminergic SN neurons of homozygous weaver mouse exclusively expressed SUR1 + Kir6.2 during the active period of dopaminergic neurodegeneration. Therefore, alternative expression of K-ATP channel subunits defines the differential response to metabolic stress and constitutes a novel candidate mechanism for the differential vulnerability of dopaminergic neurons in response to respiratory chain dysfunction in Parkinson's disease.  (+info)

(2/55562) Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection.

A new insect member of the STAT family of transcription factors (Ag-STAT) has been cloned from the human malaria vector Anopheles gambiae. The domain involved in DNA interaction and the SH2 domain are well conserved. Ag-STAT is most similar to Drosophila D-STAT and to vertebrate STATs 5 and 6, constituting a proposed ancient class A of the STAT family. The mRNA is expressed at all developmental stages, and the protein is present in hemocytes, pericardial cells, midgut, skeletal muscle and fat body cells. There is no evidence of transcriptional activation following bacterial challenge. However, bacterial challenge results in nuclear translocation of Ag-STAT protein in fat body cells and induction of DNA-binding activity that recognizes a STAT target site. In vitro treatment with pervanadate (vanadate and H2O2) translocates Ag-STAT to the nucleus in midgut epithelial cells. This is the first evidence of direct participation of the STAT pathway in immune responses in insects.  (+info)

(3/55562) Expression of novel alternatively spliced isoforms of the oct-1 transcription factor.

Analysis of the alternatively spliced isoforms of the human and mouse oct-1 genes, combined with their exon-intron structure, show a high level of evolutionary conservation between these two species. The differential expression of several oct-1 isoforms was examined by reverse transcription-polymerase chain reaction performed on the 3' region of the murine oct-1 cDNA. Variations in the relative levels and patterns of expression of the isoforms were found among different tissues. Three novel isoforms originating from the 3'-distal region of oct-1, were isolated and sequenced: Two were derived from testis, and one from myeloma cells. Splicing out of different exons as revealed in the structure of these isoforms results in reading frameshifts that presumably lead to the expression of shortened Oct-1 proteins, with distinct C-terminal tails. Altogether, six out of the eight known murine oct-1 isoforms may have distinct C-termini, implying that these multiple tails have different functional roles in cellular differentiation and physiology.  (+info)

(4/55562) Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pylori cagA positivity and severity of gastritis.

AIM: To investigate the association between the quantity of gastric chemokine mRNA expression, severity of gastritis, and cagA positivity in Helicobacter pylori associated gastritis. METHODS: In 83 dyspeptic patients, antral and corpus biopsies were taken for semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and histological grading of gastritis. Gastritis was evaluated by visual analogue scales. Quantities of chemokine (IL-8, GRO alpha, ENA-78, RANTES, MCP-1) RT-PCR products were compared with G3PDH products. Each sample was also evaluated for the presence of cagA and ureA mRNA by RT-PCR. RESULTS: mRNA expression of all five chemokines was significantly greater in H pylori positive than in H pylori negative mucosa. In H pylori positive patients, in the antrum C-X-C chemokine mRNA expression was significantly greater in cagA positive patients than in cagA negative patients, but there were no significant differences in C-C chemokine mRNA expression. In H pylori positive patients, chemokine mRNA expression in the corpus was less than in the antrum. In contrast to the antrum, only GRO alpha mRNA expression was significantly greater in cagA positive infection. Polymorphonuclear cell infiltration was correlated with C-X-C chemokine mRNA expression. Significant correlations were also found between bacterial density and C-X-C chemokine mRNA expression. CONCLUSIONS: In H pylori infection, C-X-C chemokines may play a primary role in active gastritis. Infection with cagA positive H pylori induces greater gastric chemokine mRNA expression in the antral mucosa, which may be relevant to the increased mucosal damage associated with cagA positive H pylori infection.  (+info)

(5/55562) The role of alternative splicing of the adhesion molecule, CD44, in lymphoid malignancy.

AIM: To investigate the expression of CD44 isoforms containing variant exon 6 (v6) in a well characterised cohort of patients with non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukaemia (CLL), and to correlate this with phenotype and disease course. METHODS: Cryostat sections of OCT embedded diagnostic nodal material from NHL patients and cryopreserved mononuclear preparations from CLL patients were used as sources of RNA. After reverse transcription, PCR was carried out with amplimers positioned at either side of the variant exon insertion site to amplify all possible CD44 isoforms. Those isoforms containing v6 were identified after Southern blotting and hybridisation with a radiolabelled oligonucleotide. RESULTS: Of 32 NHL samples analysed, 16 did not express CD44 isoforms containing v6, six expressed an isoform containing exon v6 alone, and 10 expressed v6 long isoforms which contained exon v6 in addition to other variant exons. These data did not correlate with lymphoma classification, disease staging, or the presence or absence of extranodal disease. However, those patients expressing v6 long CD44 isoforms had a worse overall survival than those that did not. The plateau of the survival curves was 50% compared with 82%. No v6 long isoforms were detected in the 21 CLL samples investigated. CONCLUSIONS: The expression of v6 long CD44 isoforms is associated with aggressive disease in NHL, independent of grade, stage, or presence of extranodal disease.  (+info)

(6/55562) Transcriptional regulation and induction of apoptosis: implications for the use of monomeric p53 variants in gene therapy.

The p53 tumour suppressor protein is a transcriptional activator, which can induce cell cycle arrest and apoptosis. p53 Gene mutations occur in more than 50% of all human tumours. Reintroduction of wild-type p53 but also of oligomerisation-independent p53 variants into tumour cells by gene transfer methods has been considered. We have investigated the biological properties of two carboxy-terminal deletion mutants of p53, p53 delta 300 (comprising amino acids 1-300) and p53 delta 326 (amino acids 1-326), to evaluate their potential deployment in gene therapy. Transactivation was measured in transiently transfected HeLa and SKBR3 cells. Both monomeric variants showed reduced activities compared with wild-type p53. Individual promoters were differently affected. In contrast to wild-type p53, monomeric variants were not able to induce apoptosis. We also provided wild-type p53 and p53 delta 326 with tetracycline-regulated promoters and stably introduced these constructs into Saos2 and SKBR3 cells. Upon induction, wild-type p53 expressing cells, but not p53 delta 326 expressing cells underwent apoptosis. Consistently, only wild-type p53 expressing cells accumulated p21/waf1/cip1 mRNA and protein and showed increased bax, Gadd45 and mdm2 mRNA. Neither wild-type p53 nor p53 delta 326 repressed the transcription of the IGF-1R gene in these cell lines. We conclude that the transactivation potential of monomeric, carboxy-terminally truncated p53 is not sufficient to cause induction of the endogenous target genes which trigger apoptosis.  (+info)

(7/55562) Astrocyte-specific expression of tyrosine hydroxylase after intracerebral gene transfer induces behavioral recovery in experimental parkinsonism.

Parkinson's disease is a neurodegenerative disorder characterized by the depletion of dopamine in the caudate putamen. Dopamine replacement with levodopa, a precursor of the neurotransmitter, is presently the most common treatment for this disease. However, in an effort to obtain better therapeutic results, tissue or cells that synthesize catecholamines have been grafted into experimental animals and human patients. In this paper, we present a novel technique to express tyrosine hydroxylase (TH) in the host's own astrocytes. This procedure uses a transgene in which the expression of a TH cDNA is under the control of a glial fibrillary acidic protein (GFAP) promoter, which confers astrocyte-specific expression and also increases its activity in response to brain injury. The method was tested in a rat model of Parkinson's disease produced by lesioning the striatum with 6-hydroxydopamine. Following microinjection of the transgene into the denervated striatum as a DNA-liposome complex, expression of the transgene was detected by RT-PCR and TH protein was observed specifically in astrocytes by using double-labeling immunofluorescence for GFAP and TH coupled with laser confocal microscopy. Efficacy was demonstrated by significant behavioral recovery, as assessed by a decrease in the pharmacologically induced turning behavior generated by the unilateral denervation of the rat striatum. These results suggest this is a valuable technique to express molecules of therapeutic interest in the brain.  (+info)

(8/55562) Increased expression of fibroblast growth factor 8 in human breast cancer.

Fibroblast growth factor 8 (FGF8) is an important developmental protein which is oncogenic and able to cooperate with wnt-1 to produce mouse mammary carcinoma. The level of expression of FGF8 mRNA was measured in 68 breast cancers and 24 non-malignant breast tissues. Elevated levels of FGF8 mRNA were found in malignant compared to non-malignant breast tissues with significantly more malignant tissues expressing FGF8 (P=0.019) at significantly higher levels (P=0.031). In situ hybridization of breast cancer tissues and analysis of purified populations of normal epithelial cells and breast cancer cell lines showed that malignant epithelial cells expressed FGF8 mRNA at high levels compared to non-malignant epithelial and myoepithelial cells and fibroblasts. Although two of the receptors which FGF8 binds to (FGFR2-IIIc, FGFR3-IIIc) are not expressed in breast cancer cells, an autocrine activation loop is possible since expression of fibroblast growth factor receptor (FGFR) 4 and FGFR1 are retained in malignant epithelial cells. This is the first member of the FGF family to have increased expression in breast cancer and a potential autocrine role in its progression.  (+info)