High level inhibition of HIV replication with combination RNA decoys expressed from an HIV-Tat inducible vector. (1/429)

Intracellular immunization, an antiviral gene therapy approach based on the introduction of DNA into cells to stably express molecules for the inhibition of viral gene expression and replication, has been suggested for inhibition of HIV infection. Since the Tat and Rev proteins play a critical role in HIV regulation, RNA decoys and ribozymes of these sequences have potential as therapeutic molecular inhibitors. In the present study, we have generated several anti-HIV molecules; a tat-ribozyme, RRE, RWZ6 and TAR decoys and combinations of decoys, and tested them for inhibition of HIV-1 replication in vitro. We used T cell specific CD2 gene elements and regulatory the HIV inducible promoter to direct high level expression and a 3' UTR sequence for mRNA stabilization. We show that HIV replication was most strongly inhibited with the combination TAR + RRE decoy when compared with the single decoys or the tat-ribozyme. We also show that the Tat-inducible HIV promoter directs a higher level of steady-state transcription of decoys and inhibitors and that higher levels of expression directly relate to increased levels of inhibition of HIV infection. Furthermore, a stabilization of the 3' end of TAR + RRE inhibitor transcripts using a beta-globin 3' UTR sequence leads to an additional 15-fold increase in steady-state RNA levels. This cassette when used to express the best combination decoy inhibitor TAR + RRE, yields high level HIV inhibition for greater than 3 weeks. Taken together, both optimization for high level expression of molecular inhibitors and use of combinations of inhibitors suggest better therapeutic application in limiting the spread of HIV.  (+info)

Nuclear and nucleolar targeting of human ribosomal protein S25: common features shared with HIV-1 regulatory proteins. (2/429)

The nuclear and nucleolar targeting properties of human ribosomal protein S25 (RPS25) were analysed by the expression of epitope-tagged RPS25 cDNAs in Cos-1 cells. The tagged RPS25 was localized to the cell nucleus, with a strong predominance in the nucleolus. At the amino terminus of RPS25, two stretches of highly basic residues juxtapose. This configuration shares common features with the nucleolar targeting signals (NOS) of lentiviral RNA-binding transactivators, including human immunodeficiency viruses' (HIV) Rev proteins. Deletion and site-directed mutational analyses demonstrated that the first NOS-like stretch is dispensable for both nuclear and nucleolar localization of RPS25, and that the nuclear targeting signal is located within the second NOS-like stretch. It has also been suggested that a set of continuous basic residues and the total number of basic residues should be required for nucleolar targeting. Signal-mediated nuclear/nucleolar targeting was further characterized by the construction and expression of a variety of chimeric constructs, utilizing three different backbones with RPS25 cDNA fragments. Immunofluorescence analyses demonstrated a 17 residue peptide of RPS25 as a potential nuclear/nucleolar targeting signal. The identified peptide signal may belong to a putative subclass of NOS, characterized by compact structure, together with lentiviral RNA-binding transactivators.  (+info)

Effect of rev on the cytoplasmic localization of intron-containing human immunodeficiency virus type 1 RNA. (3/429)

Human immunodeficiency virus type 1 (HIV-1) proteins are expressed from both intron-containing and completely spliced RNAs. Rev, an HIV-1 regulatory protein, is necessary for the expression of intron-containing RNAs. The effect of Rev on the subcellular localization of intron-containing HIV-1 RNA was examined by in situ RNA hybridization. In the presence of Rev, intron-containing HIV-1 RNA accumulated at the nuclear membrane and within the cytoplasm of transfected cells. In the absence of Rev, intron-containing HIV-1 RNA accumulated within the nucleus. In approximately 20% of the cells transfected in the absence of Rev, intron-containing HIV-1 RNA was also found in the cytoplasm. Differences in the subcytoplasmic localization of intron-containing HIV-1 RNA in the presence and absence of Rev were not observed using in situ RNA hybridization. To determine the effect of Rev on RNA localization within the cytoplasm, an extensive fractionation protocol involving both hypotonic and detergent lysis was used. In the presence of Rev, 40.9 +/- 4.6% of the cytoplasmic intron-containing HIV-1 RNA was released by hypotonic lysis. A similar fractionation profile was seen for several other translated viral and cellular RNAs. However, in the absence of Rev, only 16.5 +/- 5.1% of the cytoplasmic intron-containing HIV-1 RNA was released on hypotonic lysis (P < 0. 005). Thus the cytoplasmic fractionation pattern of this RNA was altered in the absence of Rev.  (+info)

Polyvalent Rev decoys act as artificial Rev-responsive elements. (4/429)

Interactions between Rev and the Rev-responsive element (RRE) control the order, rate, and extent of gene expression in human immunodeficiency virus type 1. Rev decoys may therefore prove to be useful RNA therapeutics for the treatment of AIDS. To improve upon the current generation of Rev decoys that bind single Rev molecules, it would be useful to generate polyvalent Rev decoys that could bind multiple Rev molecules. J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) originally constructed functional polyvalent Rev decoys, but the structural context of these polyvalent decoys remains unclear, and it has been argued that the individual decoys were either structurally discrete (Kjems and Sharp, J. Virol. 67:4769-4776, 1993) or were part of an extended helix (R. W. Zemmel et al., Mol. Biol. 258:763-777, 1996). To resolve the differences between these models, we have designed and synthesized concatemers of Rev-binding elements (RBEs) that fold to form multiple, discrete, high-affinity Rev-binding sites. We find that the concatenated RBEs can facilitate the cytoplasmic transport of viral mRNAs and therefore likely bind multiple Rev molecules. These artificial RREs may simultaneously sequester Rev and hinder access to the cellular transport machinery.  (+info)

Nucleolar protein B23 has molecular chaperone activities. (5/429)

Protein B23 is an abundant, multifunctional nucleolar phosphoprotein whose activities are proposed to play a role in ribosome assembly. Szebeni et al. (1997) showed stimulation of nuclear import in vitro by protein B23 and suggested that this effect was due to a molecular chaperone-like activity. Protein B23 was tested for chaperone activities using several protein substrates. The temperature-dependent and -independent aggregation of the HIV-1 Rev protein was measured using a zero angle light scattering (turbidity) assay. Protein B23 inhibited the aggregation of the Rev protein, with the amount of inhibition proportional to the concentration of B23 added. This activity was saturable with nearly complete inhibition when the molar ratio of B23:Rev was slightly above one. Protein B23 also protected liver alcohol dehydrogenase (LADH), carboxypeptidase A, citrate synthase, and rhodanese from aggregation during thermal denaturation and preserved the enzyme activity of LADH under these conditions. In addition, protein B23 was able to promote the restoration of activity of LADH previously denatured with guanidine-HCl. Protein B23 preferentially bound denatured substrates and exposed hydrophobic regions when complexed with denatured proteins. Thus, by several criteria, protein B23 behaves like a molecular chaperone; these activities may be related to its role in ribosome biogenesis.  (+info)

Sensitive in vitro analysis of HIV-1 Rev multimerization. (6/429)

Oligomerization of the Rev protein of human immuno-deficiency virus type 1 on its cognate response element is essential for export of the late viral mRNAs from the nucleus. Two regions of the protein, flanking the RNA binding site, have been defined as oligomerization sites after mutants (M4 and M7) had been reported to bind specifically to the response element but not to oligomerize in vivo or in vitro. These mutants are often used as paradigms for studies of Rev multimerization. We have re-examined the in vitro binding of these mutants to model Rev response elements, using improved gel mobility assays. We find that both mutants will form oligomers on the Rev response element, but have somewhat lower affinities for RNA than the wild-type protein. M7 has lower specific affinity, but shows little deficiency in oligomerization once binding starts. In contrast, M4 is multimerization deficient, as previously reported. Therefore, whilethe sites are correctly defined, it is inappropriate to employ the original M7 deletion mutant to study Rev oligomerization.  (+info)

The 5' RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. (7/429)

Previous work has shown that spleen necrosis virus (SNV) long terminal repeats (LTRs) are associated with Rex/Rex-responsive element-independent expression of bovine leukemia virus RNA and supports the hypothesis that SNV RNA contains a cis-acting element that interacts with cellular Rex-like proteins. To test this hypothesis, the human immunodeficiency virus type 1 (HIV) Rev/RRE-dependent gag gene was used as a reporter to analyze various SNV sequences. Gag enzyme-linked immunosorbent assay and Western blot analyses reveal that HIV Gag production is enhanced at least 20, 000-fold by the 5' SNV LTR in COS, D17, and 293 cells. Furthermore, SNV RU5 in the sense but not the antisense orientation is sufficient to confer Rev/RRE-independent expression onto a cytomegalovirus-gag plasmid. In contrast, the SNV 3' LTR and 3' untranslated sequence between env and the LTR did not support Rev-independent gag expression. Quantitative RNase protection assays indicate that the SNV 5' RNA terminus enhances cytoplasmic accumulation and polysome association of HIV unspliced and spliced transcripts. However, comparison of the absolute amounts of polysomal RNA indicates that polysome association is not sufficient to account for the significant increase in Gag production by the SNV sequences. Our analysis reveals that the SNV 5' RNA terminus contains a unique cis-acting posttranscriptional control element that interacts with hypothetical cellular Rev-like proteins to facilitate HIV RNA transport and efficient translation.  (+info)

Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. (8/429)

Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.  (+info)