Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. (1/1000)

In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retinoic acid in P19 EC cells (Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P. and Dolle, P. (1997) Dev. Dyn. 210, 173-183), we examined a potential role for retinoids in striatal development. Our results demonstrate that the lateral ganglionic eminence, unlike its medial counterpart or the adjacent cerebral cortex, is a localized source of retinoids. Interestingly, glia (likely radial glia) in the lateral ganglionic eminence appear to be a major source of retinoids. Thus, as lateral ganglionic eminence cells migrate along radial glial fibers into the developing striatum, retinoids from these glial cells could exert an effect on striatal neuron differentiation. Indeed, the treatment of lateral ganglionic eminence cells with retinoic acid or agonists for the retinoic acid receptors or retinoid X receptors, specifically enhances their striatal neuron characteristics. These findings, therefore, strongly support the notion that local retinoid signalling within the lateral ganglionic eminence regulates striatal neuron differentiation.  (+info)

Steroid regulation of retinol-binding protein in the ovine oviduct. (2/1000)

Two studies were conducted to identify retinol-binding protein (RBP) expression in the ovine oviduct and to determine the role of ovarian steroids in its regulation. Ewes were salpingectomized on Days 1, 5, or 10 of their respective estrous cycles, and oviducts were homogenized for RNA analysis, fixed for immunocytochemistry (ICC), or cultured for 24 h for protein analysis. ICC localized RBP to the epithelium of all oviducts. RBP synthesis was demonstrated by immunoprecipitation of radiolabeled RBP from the medium of oviductal explant cultures. Explant culture medium from oviducts harvested on Day 1 contained significantly more RBP than medium from oviducts collected on Days 5 or 10. Slot-blot analysis demonstrated that steady-state RBP mRNA levels were significantly higher on Day 1 than Day 5 or 10. In the second experiment, ovariectomized ewes were treated with estradiol-17beta (E2), progesterone (P4), E2+P4 (E2+P4), or vehicle control, and oviducts were analyzed as above. P4 alone or in combination with E2 significantly reduced steady-state RBP mRNA levels compared to those in E2-treated animals. Oviductal explants from E2- and E2+P4-treated animals released 3- to 5-fold more RBP into the medium than control and P4 treatments as determined by ELISA. RBP synthesis of metabolically labeled RBP was increased by E2 and E2+P4 treatments. This study demonstrates that P4 applied on an estradiol background negatively regulates RBP gene expression in the oviduct whereas estradiol appears to stimulate RBP synthesis and secretion.  (+info)

Lipoprotein lipase expression level influences tissue clearance of chylomicron retinyl ester. (3/1000)

Approximately 25% of postprandial retinoid is cleared from the circulation by extrahepatic tissues. Little is known about physiologic factors important to this uptake. We hypothesized that lipoprotein lipase (LpL) contributes to extrahepatic clearance of chylomicron vitamin A. To investigate this, [3H]retinyl ester-containing rat mesenteric chylomicrons were injected intravenously into induced mutant mice and nutritionally manipulated rats. The tissue sites of uptake of 3H label by wild type mice and LpL-null mice overexpressing human LpL in muscle indicate that LpL expression does influence accumulation of chylomicron retinoid. Skeletal muscle from mice overexpressing human LpL accumulated 1.7- to 2.4-fold more 3H label than wild type. Moreover, heart tissue from mice overexpresssing human LpL, but lacking mouse LpL, accumulated less than half of the 3H-label taken up by wild type heart. Fasting and heparin injection, two factors that increase LpL activity in skeletal muscle, increased uptake of chylomicron [3H] retinoid by rat skeletal muscle. Using [3H]retinyl palmitate and its non-hydrolyzable analog retinyl [14C]hexadecyl ether incorporated into Intralipid emulsions, the importance of retinyl ester hydrolysis in this process was assessed. We observed that 3H label was taken up to a greater extent than 14C label by rat skeletal muscle, suggesting that retinoid uptake requires hydrolysis. In summary, for each of our experiments, the level of lipoprotein lipase expression in skeletal muscle, heart, and/or adipose tissue influenced the amount of [3H]retinoid taken up from chylomicrons and/or their remnants.  (+info)

IL-4 and IL-10 are both required for the induction of oral tolerance. (4/1000)

Protection from the development of experimental autoimmune uveitis (EAU) can be induced by feeding mice interphotoreceptor retinoid binding protein before uveitogenic challenge with the same protein. Two different regimens are equally effective in inducing protective tolerance, although they seem to do so through different mechanisms: one involving regulatory cytokines (IL-4, IL-10, and TGF-beta), and the other with minimal involvement of cytokines. Here we studied the importance of IL-4 and IL-10 for the development of oral tolerance using mice genetically engineered to lack either one or both of these cytokines. In these animals we were able to protect against EAU only through the regimen inducing cytokine-independent tolerance. When these animals were fed a regimen that in the wild-type animal is thought to predominantly induce regulatory cells and is associated with cytokine secretion, they were not protected from EAU. Interestingly, both regimens were associated with reduced IL-2 production and proliferation in response to interphotoreceptor retinoid binding protein. These findings indicate that both IL-4 and IL-10 are required for induction of protective oral tolerance dependent on regulatory cytokines, and that one cytokine cannot substitute for the other in this process. These data also underscore the fact that oral tolerance, manifested as suppression of proliferation and IL-2 production, is not synonymous with protection from disease.  (+info)

Pregnancy ameliorates induction and expression of experimental autoimmune uveitis. (5/1000)

Female patients suffering from autoimmune uveitis are reported to experience a temporary remission during pregnancy. Experimental autoimmune uveitis (EAU) is a model for human uveitis. Here we examine the effect of pregnancy on the development of EAU and its associated immunological responses. Susceptible C57BL/6 mice were immunized with interphotoreceptor retinoid-binding protein (IRBP). EAU scores and Ag-specific responses were evaluated 21 days later. Mice immunized during pregnancy developed significantly less EAU than nonpregnant controls. Their lymph node cells and splenocytes produced a distinct pattern of cytokines in response to IRBP: reduced IFN-gamma and IL-12 p40, but unchanged levels of TNF-alpha, IL-4, IL-5, and IL-10. Anti-IRBP Ab isotypes revealed an up-regulation of IgG1, indicating a possible Th2 bias at the humoral level. Ag-specific proliferation and delayed hypersensitivity, as well as mitogen-induced IFN-gamma production, remained undiminished, arguing against an overall immune deficit. Interestingly, pregnant mice that received an infusion of IRBP-primed lymphoid cells from nonpregnant donors also developed reduced EAU, suggesting that pregnancy suppresses not only the generation, but also the function of mature uveitogenic effector T cells. Pregnant mice at the time of immunization exhibited elevated levels of TGF-beta, but not of IL-10, in the serum. We suggest that protection from EAU during pregnancy is due primarily to a selective reduction of Ag-specific Th1 responses with only marginal enhancement of Th2 function, and that these effects may in part be secondary to elevated systemic levels of TGF-beta.  (+info)

Differential mechanisms of retinoid transfer from cellular retinol binding proteins types I and II to phospholipid membranes. (6/1000)

Cellular retinol-binding proteins types I and II (CRBP-I and CRBP-II) are known to differentially facilitate retinoid metabolism by several membrane-associated enzymes. The mechanism of ligand transfer to phospholipid small unilamellar vesicles was compared in order to determine whether differences in ligand trafficking properties could underlie these functional differences. Unidirectional transfer of retinol from the CRBPs to membranes was monitored by following the increase in intrinsic protein fluorescence that occurs upon ligand dissociation. The results showed that ligand transfer of retinol from CRBP-I was >5-fold faster than transfer from CRBP-II. For both proteins, transfer of the other naturally occurring retinoid, retinaldehyde, was 4-5-fold faster than transfer of retinol. Rates of ligand transfer from CRBP-I to small unilamellar vesicles increased with increasing concentration of acceptor membrane and with the incorporation of the anionic lipids cardiolipin or phosphatidylserine into membranes. In contrast, transfer from CRBP-II was unaffected by either membrane concentration or composition. Preincubation of anionic vesicles with CRBP-I was able to prevent cytochrome c, a peripheral membrane protein, from binding, whereas CRBP-II was ineffective. In addition, monolayer exclusion experiments demonstrated differences in the rate and magnitude of the CRBP interactions with phospholipid membranes. These results suggest that the mechanisms of ligand transfer from CRBP-I and CRBP-II to membranes are markedly different as follows: transfer from CRBP-I may involve and require effective collisional interactions with membranes, whereas a diffusional process primarily mediates transfer from CRBP-II. These differences may help account for their distinct functional roles in the modulation of intracellular retinoid metabolism.  (+info)

Protective effect of the type IV phosphodiesterase inhibitor rolipram in EAU: protection is independent of IL-10-inducing activity. (7/1000)

PURPOSE: Experimental autoimmune uveoretinitis (EAU) is a cell-mediated model of retinal autoimmunity that is negatively regulated by interleukin (IL)-10. The antidepressant drug rolipram, a type IV phosphodiesterase inhibitor, enhances IL-10 production by monocyte/macrophages. The effect of rolipram on induction of EAU and its associated immunologic responses was investigated. METHODS: Mice were challenged for EAU induction by immunization with the retinal antigen interphotoreceptor retinoid-binding protein (IRBP) or by adoptive transfer of uveitogenic T cells and were treated with rolipram. EAU severity and immunologic responses to IRBP were analyzed. In addition, the effect of rolipram added to the culture on antigen-driven responses of primed lymph node cells was tested. RESULTS: Rolipram treatment from days -1 to 7 after immunization (afferent phase) was not protective, but severity of EAU was reduced to 50% by treatment from days 8 to 16 after immunization or when EAU was induced by adoptive transfer (efferent phase). Antigen-specific proliferation and interferon (IFN)-gamma production ex vivo by lymph node cells of protected mice were not reduced. However, the addition of rolipram directly to the culture suppressed IRBP-driven proliferation and IFN-gamma production by primed lymph node cells. Freshly explanted lymph node cells of treated mice showed inhibition of IFN-gamma mRNA but no parallel enhancement of IL-10 mRNA by quantitative polymerase chain reaction. Rolipram inhibited EAU in IL-10 knockout mice equally well compared with controls and suppressed their primed lymph node cells in culture. CONCLUSIONS: Rolipram appears to inhibit the expansion and effector function of uveitogenic T cells, raising the possibility that it may be useful for treatment of established disease. Contrary to expectations based on in vitro studies, the protective effects in vivo appear to be independent of IL-10. The observation that suppression of antigen-specific responses is demonstrable only in the physical presence of the drug suggests that, in a clinical setting, continuous administration of rolipram might be needed to sustain its therapeutic effect.  (+info)

Evidence for an essential role of megalin in transepithelial transport of retinol. (8/1000)

Transepithelial transport of retinol is linked to retinol-binding protein (RBP), which is taken up and also synthesized in a number of epithelia. By immunocytochemistry of human, rat, and mouse renal proximal tubules, a strong staining in apical endocytic vacuoles, lysosomes, endoplasmic reticulum, Golgi, and basal vesicles was observed, in accordance with luminal endocytic uptake as well as a constitutive synthesis and basal secretion of RBP. Analysis of mice with target disruption of the gene for the major endocytic receptor of proximal tubules, megalin, revealed no RBP in proximal tubules of these mice. Western blotting and HPLC of the urine of the megalin-deficient mice instead revealed a highly increased urinary excretion of RBP and retinol, demonstrating that glomerular filtered RBP-retinol of megalin-deficient mice escapes uptake by proximal tubules. A direct megalin-mediated uptake of purified RBP-retinol was indicated by surface plasmon resonance analysis and uptake in immortalized rat yolk sac cells. Uptake was partially inhibited by a polyclonal megalin antibody and the receptor-associated protein. The present data show that the absence of RBP-binding megalin causes a significantly increased loss of RBP and retinol in the urine, demonstrating a crucial role of megalin in vitamin A homeostasis.  (+info)