Retinal ischemia-reperfusion injury attenuated by blocking of adhesion molecules of vascular endothelium. (73/12697)

PURPOSE: To evaluate quantitatively the effects of blocking of adhesion molecules (P-selectin or intercellular adhesion molecule-1 [ICAM-1]) on leukocyte dynamics in the retinal microcirculation in vivo during ischemia-reperfusion injury and the therapeutic efficacy of the blocking of adhesion molecules on retinal ischemia-reperfusion injury. METHODS: Retinal ischemia was induced for 60 minutes in anesthetized pigmented rats by temporary ligation of the optic nerve. P-selectin or ICAM-1 monoclonal antibody (mAb) was administered at 5 minutes before reperfusion. At 4, 12, and 24 hours after onset of reperfusion, leukocyte behavior in the retinal microcirculation was evaluated in vivo with acridine orange digital fluorography. After 7 or 14 days of reperfusion, retinal damage was evaluated histologically. RESULTS: P-selectin mAb significantly inhibited leukocyte rolling along the major retinal veins after reperfusion. Subsequently, the number of accumulated leukocytes decreased in the P-selectin-inhibited rats. ICAM-1 mAb also inhibited leukocyte accumulation during the reperfusion period in a more substantial manner than P-selectin mAb. Histologic examination demonstrated the protective effect of the blocking of P-selectin or ICAM-1. In accordance with a reduction in leukocyte accumulation, the protective effect of mAb on retinal ischemia-reperfusion injury was more substantial in ICAM-1-inhibited rats. CONCLUSIONS: The present study demonstrates the inhibitory effect of P-selectin and ICAM-1 mAb on leukocyte accumulation and subsequent tissue injury during retinal ischemia-reperfusion injury.  (+info)

Functional protection of photoreceptors from light-induced damage by dimethylthiourea and Ginkgo biloba extract. (74/12697)

PURPOSE: To investigate the functional protective effect of a synthetic (dimethylthiourea, DMTU) and a natural antioxidant (Ginkgo biloba extract, EGb 761) against light-induced retinal degeneration. METHODS: Wistar rats were exposed for 24 hours to 1700-lux light after treatment with DMTU or EGb 761. Electroretinograms were recorded before and on day (D)1, D3, D8, D15, D22, and D29 after light exposure. The b-wave amplitude was plotted against log L (ganzfeld luminance), providing the b-wave sensitivity curve. The Naka-Rushton function fitted to the sensitivity curve enabled derivation of the parameters Bmax (saturated amplitude) and K (luminance-inducing Bmax/2). In addition, rats from each group were killed for retinal morphometric analyses. RESULTS: In the untreated group, light exposure caused collapse of the b-wave sensitivity curves. Bmax was reduced by 51% at D1 without subsequent recovery. K increased temporarily, reverting to normal values 8 days later. The outer nuclear layer thicknesses decreased markedly in the superior retina. In the treated groups, light exposure had a weaker effect on sensitivity curves. The values of Bmax were not significantly different from those in the unexposed-untreated group, although K increased temporarily. Retinal morphometry was preserved. CONCLUSIONS: Dimethylthiourea and EGb 761 afford functional protection against light-induced retinal damage.  (+info)

Evaluation of the APOH gene as a positional candidate for prcd in dogs. (75/12697)

PURPOSE: Progressive rod-cone degeneration (prcd) is an autosomal recessive retinal degeneration of dogs characterized by abnormalities in lipid metabolism. It has recently been mapped to the centromeric region of canine chromosome 9, homologous to human 17q, which contains the apolipoprotein H (apoH, protein; APOH, gene) gene involved in lipid metabolism and regulation of triglycerides. The present study was undertaken to evaluate APOH as a positional candidate for prcd. METHODS: Expression of APOH in the retina was examined by reverse transcription-polymerase chain reaction (RT-PCR) and by immunocytochemistry in normal and prcd-affected dogs. The level of apoH in the plasma was determined by western blot analysis. Intragenic polymorphic markers were identified and typed in the prcd pedigree. Canine-rodent hybrid cell lines were analyzed to detect canine APOH. RESULTS: ApoH has been localized to the photoreceptor outer segment layer by immunocytochemistry. Its expression in the retina of normal and prcd-affected dogs was confirmed by RT-PCR. The levels of antihuman apoH cross-reacting material in plasma were similar in all dogs, regardless of disease status. Finally, linkage analysis of the APOH gene with the disease locus in the prcd pedigree detected 3 recombinants among 70 informative offsprings (lod score 15.09 at 0 = 4.3 centimorgan [cM]). CONCLUSIONS: APOH is expressed in the retina and tightly linked to the prcd locus. However, despite its potential role in phenotypes of abnormal lipid metabolism associated with prcd, the gene has been excluded as a primary candidate for prcd by linkage analysis.  (+info)

Zinc deficiency and oxidative stress in the retina of pigmented rats. (76/12697)

PURPOSE: To determine the effect of moderate zinc deficiency on antioxidant defenses and measures of oxidative stress in the retina and retinal pigment epithelium (RPE) of Brown Norway Rats. METHODS: Twenty-four rats were housed individually and divided into three groups of 8 rats each. Group 1 was fed ad libitum a semipurified control diet formulated to contain 50 parts per million [ppm] total zinc; group 2 was fed ad libitum an identical diet but containing 5 ppm total zinc; and group 3 was pair-fed the control diet but restricted in amount to that consumed by group 2. Food intake was measured daily and the rats weighed weekly. After 6 weeks, the rats were killed and the following measurements were made: serum zinc, serum alkaline phosphatase, retinal zinc, RPE-choroid zinc, RPE-choroid catalase, liver metallothionein (MT), retinal MT, RPE-choroid MT, retinal catalase, and retinal thiobarbituric reactive substances (TBARS). RESULTS: The following showed statistically significant differences between groups 2 and 3, respectively: serum Zn (1216 micro/l versus 1555 microg/l, P < or = 0.01), serum alkaline phosphatase (3.75 U/mg versus 5.10 U/mg, P < or = 0.05), liver MT (4.3 microg/mg protein versus 16.7 microg/mg, P < or = 0.0001), RPE-choroid MT (1.3 microg/mg protein versus 2.2 microg/mg, P < or = 0.02), retinal MT (0.85 microg/mg protein versus 2.8 microg/mg, P < or = 0.05), and retinal TBARS (6.2 nM/mg protein versus 2.2 nM/mg, P < or = 0.05). CONCLUSIONS: The results show that retinal MT and RPE MT concentrations are very sensitive to intake of dietary zinc. The increase in retinal TBARS in group 2 indicates that moderate zinc deficiency increases oxidative stress to the retina. The results also suggest that MT is protective against lipid peroxidation of retinal membranes.  (+info)

Repeated injections of a ciliary neurotrophic factor analogue leading to long-term photoreceptor survival in hereditary retinal degeneration. (77/12697)

PURPOSE: To determine whether ciliary neurotrophic factor (CNTF) or brain-derived neurotrophic factor (BDNF) treatment leads to long-term photoreceptor survival in hereditary retinal degeneration. METHODS: An autosomal dominant feline model of rod-cone dystrophy was used throughout the study with two normal animals. In the first experiment, intravitreal injections of a human CNTF analogue (Axokine; Regeneron Pharmaceuticals, Tarrytown, NY) were administered to one eye of each animal (n = 10) beginning on postnatal day 10 and were repeated every 4 weeks. Clinical and histopathologic examinations were performed at 5.5, 9.5, and 13.5 weeks. In the second experiment, animals (n = 17) were randomly assigned to receive intravitreal injections of either Axokine (at half the initial dose), human BDNF, or the vehicle for Axokine to one eye at 5.5 weeks. The same therapy was repeated every 4 weeks in each group. Clinical and histopathologic examinations were performed at 9.5, 13.5, and 17.5 weeks. Photoreceptor survival was assessed by cell counting. Apoptotic cells were identified by morphology and a modified TdT-dUTP terminal nick-end labeling (TUNEL) technique. In the third experiment, two normal animals were treated with Axokine as in the first experiment. Glial fibrillary acidic protein ((GFAP) immunohistochemistry was performed to assess glial cell reaction. RESULTS: In the first two experiments, Axokine significantly prolonged photoreceptor survival (P < 0.01) and reduced the presence of apoptotic cells (P < 0.05) and TUNEL-positive cells (P < 0.05). In the second experiment, results in the the BDNF- and sham-injected eyes were not significantly different from those in the untreated eyes. Minimal posterior subcapsular cataract and mild retinal folds were found in all Axokine-treated eyes in both dystrophic and normal animals. These complications were milder in the second experiment when injections were started later and at a reduced dose. GFAP immunolabeling was also increased in all Axokine-treated eyes. CONCLUSIONS: Axokine, but not BDNF, delays photoreceptor loss in this hereditary retinal degeneration. Repeated injections maintain the protective effect.  (+info)

Chloroquine retinopathy in the rhesus monkey. (78/12697)

Chloroquine was administered intramuscularly 5 days a week to rhesus monkeys for as long as 4 1/2 years. No clinical, fluorescein angiographic, or electrophysiological evidence of retinal damage was observed. Yet chloroquine/chloroquine byproduct analysis of the ocular tissues revealed an enormous binding capacity of the pigmented tissues of the eye (choroid plus RPE, ciliary body, and iris) with eventual accumulation observed in the retina. Despite the normal ophthalmic appearance and function, extensive pathological changes occurred in the retinas and choroids of these experimental monkeys. The chloroquine caused an initial dramatic effect on the ganglion cells, with the photoreceptors affected shortly thereafter. Patching degeneration of the ganglion cells and photoreceptors then progressed over several years, with the choroid and pigment epithelium ultimately deteriorating as well.  (+info)

Structural specializations of the eye in the vizcacha (Lagostomus maximus maximus). (79/12697)

Vizcachas (Lagostomus maximus maximus, Chinchillidae) are nocturnal rodents living in burrows in many regions of Argentina, Bolivia, and Chile. We have studied the eye of the vizcacha using several light and electron microscopic procedures, with the purpose of understanding the role of vision in the behavior of this species. Our observations demonstrated an avascular, rod-rich retina, with a specialized region spanning through most of the equator of the eye. In this central band, all neural retinal layers exhibited a high cell density, whereas the photoreceptor layer was characterized by the presence of very long rods. In addition, the central region was associated with a distinct pigmentation pattern, including scarce granulation of the pigment epithelium, low pigmentation of the choroid, and the selective attachment of suprachoroidal cells to the inner scleral surface. These central modifications probably form the structural basis of a reflecting tapetum. The eye of the vizcacha received both long and short ciliary vessels, and a specialized cilio-sclero-choroidal vascular network appeared at the equatorial region. Our findings suggest that the equatorial region of the eye of the vizcacha could be a highly sensitive light detector related to foraging behaviors during crepuscular or nocturnal hours.  (+info)

Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. (80/12697)

Muscimol-induced inactivation of the monkey frontal eye field: effects on visually and memory-guided saccades. Although neurophysiological, anatomic, and imaging evidence suggest that the frontal eye field (FEF) participates in the generation of eye movements, chronic lesions of the FEF in both humans and monkeys appear to cause only minor deficits in visually guided saccade generation. Stronger effects are observed when subjects are tested in tasks with more cognitive requirements. We tested oculomotor function after acutely inactivating regions of the FEF to minimize the effects of plasticity and reallocation of function after the loss of the FEF and gain more insight into the FEF contribution to the guidance of eye movements in the intact brain. Inactivation was induced by microinjecting muscimol directly into physiologically defined sites in the FEF of three monkeys. FEF inactivation severely impaired the monkeys' performance of both visually guided and memory-guided saccades. The monkeys initiated fewer saccades to the retinotopic representation of the inactivated FEF site than to any other location in the visual field. The saccades that were initiated had longer latencies, slower velocities, and larger targeting errors than controls. These effects were present both for visually guided and for memory-guided saccades, although the memory-guided saccades were more disrupted. Initially, the effects were restricted spatially, concentrating around the retinotopic representation at the center of the inactivated site, but, during the course of several hours, these effects spread to flanking representations. Predictability of target location and motivation of the monkey also affected saccadic performance. For memory-guided saccades, increases in the time during which the monkey had to remember the spatial location of a target resulted in further decreases in the accuracy of the saccades and in smaller peak velocities, suggesting a progressive loss of the capacity to maintain a representation of target location in relation to the fovea after FEF inactivation. In addition, the monkeys frequently made premature saccades to targets in the hemifield ipsilateral to the injection site when performing the memory task, indicating a deficit in the control of fixation that could be a consequence of an imbalance between ipsilateral and contralateral FEF activity after the injection. There was also a progressive loss of fixation accuracy, and the monkeys tended to restrict spontaneous visual scanning to the ipsilateral hemifield. These results emphasize the strong role of the FEF in the intact monkey in the generation of all voluntary saccadic eye movements, as well as in the control of fixation.  (+info)