Sustained induction of fetal hemoglobin by pulse butyrate therapy in sickle cell disease. (1/145)

High levels of fetal hemoglobin (Hb F) protect from many of the complications of sickle cell disease and lead to improved survival. Butyrate and other short chain fatty acids were previously shown to increase Hb F production in erythroid cells in vitro and in animal models in vivo. However, butyrates are also known to inhibit the proliferation of many cell types, including erythroid cells. Experience with the use of butyrate in animal models and in early clinical trials demonstrated that the Hb F response may be lost after prolonged administration of high doses of butyrate. We hypothesized that this loss of response may be a result of the antiproliferative effects of butyrate. We designed a regimen consisting of intermittent or pulse therapy in which butyrate was administered for 4 days followed by 10 to 24 days with no drug exposure. This pulse regimen induced fetal globin gene expression in 9 of 11 patients. The mean Hb F in this group increased from 7.2% to 21.0% (P <.002) after intermittent butyrate therapy for a mean duration of 29.9 weeks. This was associated with a parallel increase in the number of F cells and F reticulocytes. The total hemoglobin levels also increased from a mean of 7.8 g/dL to a mean of 8.8 g/dL (P <.006). The increased levels of Hb F were sustained in all responders, including 1 patient who has been on pulse butyrate therapy for more than 28 months. This regimen, which resulted in a marked and sustained increase in Hb F levels in more than two thirds of the adult sickle cell patients enrolled in this study, was well tolerated without adverse side effects. These encouraging results require confirmation along with an appropriate evaluation of clinical outcomes in a larger number of patients with sickle cell disease.  (+info)

Elevated reticulocyte count--a clue to the diagnosis of haemolytic-uraemic syndrome (HUS) associated with gemcitabine therapy for metastatic duodenal papillary carcinoma: a case report. (2/145)

In adults, the haemolytic-uraemic syndrome (HUS) is associated with probable causative factors in the minority of all cases. Cytotoxic drugs are one of these potential causative agents. Although metastatic cancer by itself is a recognized risk-factor for the development of HUS, therapy with mitomycin-C, with cis-platinum, and with bleomycin carries a significant, albeit extremely small, risk for the development of HUS, compared with all other cytotoxic drugs. Gemcitabine is a novel cytotoxic drug with promising activity against pancreatic adenocarcinoma. We are reporting on one patient with metastatic duodenal papillary carcinoma developing HUS while on weekly gemcitabine therapy. The presenting features in this patient were non-cardiac pulmonary oedema, renal failure, thrombocytopenia and haemolytic anaemia. The diagnosis of HUS was made on the day of admission of the patient to this institution. Upon aggressive therapy, including one single haemodialysis and five plasmaphereses, the patient recovered uneventfully, with modestly elevated creatinine-values as a remnant of the acute illness. Re-exposure to gemcitabine 6 months after the episode of HUS instituted for progressive carcinoma, thus far has not caused another episode of HUS.  (+info)

The effect of recombinant human erythropoietin on platelet counts is strongly modulated by the adequacy of iron supply. (3/145)

The effect of recombinant human erythropoietin (rHuEpo) on megakaryopoiesis remains controversial. Treatment with rHuEpo in renal failure patients has been associated with a slight elevation of platelet counts. In animal studies, high doses of rHuEpo produced an increase of platelet counts followed by a gradual return to normal after 7 to 15 days or even a substantial degree of thrombocytopenia. However, because iron deficiency is also known to be associated with thrombocytosis, (functional) iron deficiency during rHuEpo could be contributing to these observations. We investigated the impact of iron supply on changes in platelet counts induced by rHuEpo. Rats were either fed normal food (normal rats) or received 1% carbonyl iron for 2 weeks or 3 months, as well as during the experiment, to achieve iron supplementation or overload, respectively. Rats of all three categories then received daily intravenous injections of rHuEpo (10, 50, or 150 U) or normal saline (0 U) for 20 days. With 0 to 10 U rHuEpo, platelets remained stable. In normal rats receiving 50 to 150 U rHuEpo, platelets increased to 120% to 140% of baseline at 4 to 12 days to level off at 120% at 16 to 20 days. This response was less sustained in splenectomized animals. Iron-supplemented rats receiving 50 to 150 U rHuEpo also increased platelets initially, but the peak was at day 4, followed by a gradual return to baseline and even a moderate thrombocytopenia later on. Iron-overloaded rats receiving 50 to 150 U rHuEpo also had increased platelets at day 4, but the duration of platelet increase was shorter, and they experienced a more pronounced degree of thrombocytopenia in proportion to the dose of rHuEpo. Because the early elevation of platelets was of larger magnitude than hematocrit changes, it is unlikely that it could be accounted for by shrinkage of plasma volume. Because it was observed in all three iron conditions, there appears to be some direct positive effect of rHuEpo on platelet production. However, after this transient effect, expanded erythropoiesis appears to exert a negative impact upon platelet production. Secondary thrombocytopenia was not related to splenic pooling, and its very slow correction after cessation of rHuEpo therapy is not compatible with changes in platelet survival. Rather, it is consistent with stem cell competition between erythroid and megakaryocytic development. However, this secondary thrombocytopenia is masked by (functional) iron deficiency in rats not receiving an adequate iron supply from food or stores.  (+info)

Influence of sex on clinical features, laboratory findings, and complications of typhoid fever. (4/145)

Clinical features, laboratory findings, and complications of typhoid fever were correlated with sex through a retrospective case note review of 102 hospitalized culture-positive patients in Durban, South Africa. Intestinal perforation (P = 0.04), occult blood losses in stools (P = 0.04), and a mild reticulocytosis in the absence of hemolysis (P = 0.02) occurred more frequently in males than in females. A single pretreatment Widal O antibody titer > or = 1:640 was also a statistically significant occurrence in males (P = 0. 006). Female patients were significantly more severely ill (P = 0.0004) on admission and had chest signs consistent with bronchopneumonia (P = 0.04), transverse myelitis (P = 0.04), abnormal liver function test results (P = 0.0003), and abnormal findings in urinalyses (P = 0.02). Typhoid hepatitis (P = 0.04) and glomerulonephritis (P = 0.02) were present significantly more frequently in females. Whether these differences were due to differences in host's immune response to acute infection need to be determined in a prospective study.  (+info)

Improvement of mouse beta-thalassemia upon erythropoietin delivery by encapsulated myoblasts. (5/145)

The goal of the present study was to analyze if sustained delivery of elevated doses of recombinant erythropoietin (Epo), by genetically modified and immunoprotected allogenic cells, was able to correct the chronic anemia, characteristic of a spontaneous mouse model of beta-thalassemia (Hbb thal 1). Mouse C2C12 myoblast cells were transfected with a plasmid containing the mouse Epo cDNA and a mutated dihydrofolate reductase (DHFR) gene for gene amplification upon administration of increasing doses of methotrexate. In order to immunoprotect the transplanted cells, the stably modified cells were loaded into polyethersulfone microporus hollow fibers which were implanted subcutaneously into Hbb thal 1 mice. An increase in hematocrit starting 2 weeks after implantation was associated with elevated blood levels of Epo and an improved red blood cell phenotype. The latter indicated an improvement of cell morphology and membrane defects, in particular a reduced amount of free alpha hemoglobin chain, the hallmark of globin chain imbalance in beta-thalassemia. A reduction of reticulocyte count contrasting with the increase in hematocrit was also observed suggesting an improved erythrocyte survival. We conclude that the phenotype can be durably improved in some beta-thalassemic mice upon in vivo delivery of recombinant Epo by polymer encapsulated cells. Sustained elevated delivery of recombinant Epo holds promise for the treatment of beta-thalassemia-associated chronic anemia.  (+info)

Factors determining the percentage of hypochromic red blood cells in hemodialysis patients. (6/145)

Factors determining the percentage of hypochromic red blood cells determines iron status in hemodialysis patients. BACKGROUND: Determination of the percentage of hypochromic red blood cells (RBC; %HYPO) has been advocated as a sensitive index of functional iron deficiency during erythropoietin (EPO) therapy in hemodialyzed patients. METHODS: The significance of %HYPO in chronic renal failure was evaluated in 64 chronically hemodialyzed patients. The linear correlation was determined between %HYPO and 13 variables, including age, sex, weight, C-reactive protein (CRP), ferritin, transferrin (Tf), Tf saturation, soluble Tf receptor (sTfR), serum iron (SI), urea, parathormone, dialysis dose (Kt/V), dose of EPO administered (EPO), and absolute reticulocyte count. Multiple regression analyses were then performed to select the parameters that jointly provide the best prediction of %HYPO. RESULTS: Univariate analysis showed significant correlations between %HYPO and iron parameters (sTfR, Tf saturation, SI, and ferritin, in decreasing order), EPO, reticulocyte count, and CRP. Multivariate analysis yielded an equation showing that the variation of %HYPO is essentially associated with the combined changes in sTfR, CRP, and EPO dosage. CONCLUSIONS: %HYPO is a meaningful and inexpensive parameter that reflects the integrated effects of iron stores, inflammation, and erythropoietic stimulation on iron availability in hemodialyzed patients. Among iron exchange parameters, sTfR is the best predictor of %HYPO, followed by Tf saturation, SI, and ferritin.  (+info)

Natural history of hereditary spherocytosis during the first year of life. (7/145)

Although hereditary spherocytosis (HS) is a common disorder of the red cell membrane, its clinical and biologic expression at birth and in early infancy has received little attention. In order to obtain insights into the natural history of HS during infancy, we studied 46 neonates, 39 from families in which 1 of the parents had previously been given a diagnosis of HS and 7 presenting with nonimmune hemolytic anemia and no family history of HS. Of these 46 neonates, 23 were subsequently confirmed to have HS and 23 were found to be healthy. The hematologic and biologic analyses carried out in this cohort of 46 newborns enabled us to develop guidelines for early diagnosis of HS. A careful clinical follow-up of 34 HS patients during the first year of life allowed us to define several important clinical features of HS during this period. Hemoglobin values are usually normal at birth but decrease sharply during the subsequent 20 days, which leads, in many cases, to a transient and severe anemia. The anemia is severe enough to warrant blood transfusions in a large number of infants with HS (26 of 34 in our series). The aggravation of anemia appears to be related to the inability of these infants to mount an appropriate erythropoietic response to anemia and to the development of splenic filtering function. These findings indicate that careful monitoring of infants with HS during the first 6 months of life is important for appropriate clinical management. (Blood. 2000;95:393-397)  (+info)

A hematological study on thirteen cats with myelodysplastic syndrome. (8/145)

Hematological abnormalities were investigated in 13 cats with myelodysplastic syndrome (MDS). Examination of the peripheral blood samples from the 13 cats revealed anemia in 11 cats, leukopenia in 9 cats, and thrombocytopenia in 9 cats. Four cats had pancytopenia (30.8%) and 9 cats had bicytopenia (69.2%). Dysplastic changes of erythrocytes, neutrophils, and platelets in the peripheral blood were found in 5, 10 and 8 cats, respectively. Bone marrow examination of the 13 cats revealed that ratios of blast cells to all nucleated cells (ANC) ranged from 0 to 20%. Ratios of erythroid progenitor cells to ANC were more than 50% in 3 cats and less than 50% in 10 cats. Eosinophils accounted for more than 5% of non-erythroid cells in 10 cats. Dysplastic changes in the granurocytic, erythrocytic, and megakaryocytic cells in the bone marrow were found in 11, 7 and 5 cats, respectively. Dysplastic changes in these cats included giant neutrophils, ring-nucleated neutrophils, binuclear myelocytes, hypersegmented and hyposegmented neutrophils, megaloblastoid erythroblasts, multinucleated erythroblasts, micromegakaryocytes, and segmented multinucleated megakaryocytes. Virological examination indicated the presence of feline leukemia virus antigen in the peripheral blood from all of the 13 cats with MDS. The peripheral blood cytopenias and dysplastic changes in each blood cell lineage in the bone marrow were shown to be important for the diagnosis of MDS in cats.  (+info)