The marine cyanobacterium Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the enzyme. (33/17643)

Cyanobacteria assigned to the genus Synechococcus are an important component of oligotrophic marine ecosystems, where their growth may be constrained by low availability of fixed nitrogen. Urea appears to be a major nitrogen resource in the sea, but little molecular information exists about its utilization by marine organisms, including Synechococcus. Oligonucleotide primers were used to amplify a conserved fragment of the urease (urea amidohydrolase, EC 3.5.1.5) coding region from cyanobacteria. A 5.7 kbp region of the genome of the unicellular marine cyanobacterium Synechococcus sp. strain WH7805 was then cloned, and genes encoding three urease structural subunits and four urease accessory proteins were sequenced and identified by homology. The WH7805 urease had a predicted subunit composition typical of bacterial ureases, but the organization of the WH7805 urease genes was unique. Biochemical characteristics of the WH7805 urease enzyme were consistent with the predictions of the sequence data. Physiological data and sequence analysis both suggested that the urease operon may be nitrogen-regulated by the ntcA system in WH7805. Inactivation of the large subunit of urease, ureC, prevented WH7805 and Synechococcus WH8102 from growing on urea, demonstrating that the urease genes cloned are essential to the ability of these cyanobacteria to utilize urea as a nitrogen source.  (+info)

Homologous expression of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. (34/17643)

An homologous expression system has been developed for soluble methane monooxygenase (sMMO) genes from Methylosinus trichosporium OB3b. sMMO-minus mutants were previously obtained after marker-exchange mutagenesis, by the insertion of a kanamycin-resistance cassette into the mmoX gene of the sMMO operon. Complementation of the sMMO-minus genotype was achieved by conjugation with broad-host-range plasmids containing the native promoter and sMMO operon from Ms. trichosporium OB3b (pVK100Sc and pHM2). In wild-type methanotrophs, copper ions present in the growth medium at concentrations greater than 0.25 microM inhibit transcription of sMMO genes. The stable maintenance of pVK100Sc resulted in transconjugant methanotrophs with a decreased sensitivity to copper, since expression of sMMO occurred at copper sulphate concentrations of 7.5 microM. sMMO activity was only detected in soluble extracts after the addition of purified sMMO reductase component, which is inhibited by copper ions in vitro. This phenomenon could have arisen due to the increased number of sMMO gene copies (derived from pVK100Sc) in the cell. Transconjugants obtained from conjugations with pHM2 expressed sMMO at copper concentrations of 0-2.5 microM only and sMMO activity was not restored by the addition of purified reductase component at copper concentrations higher than 2.5 microM. Southern hybridization showed that the plasmid had integrated into the chromosome, probably by a single homologous recombination event. This is the first report of homologous sMMO expression in a methanotroph with enzyme activities that are comparable to the activity reported in wild-type strains. This expression system will be useful for site-directed mutagenesis of active-site residues of sMMO from Ms. trichosporium OB3b.  (+info)

Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. (35/17643)

Pseudomonas aeruginosa ATCC 17933 grown aerobically on ethanol produces a soluble cytochrome c550 together with a quinoprotein ethanol dehydrogenase. A 3.2 kb genomic DNA fragment containing the gene encoding cytochrome c550 was cloned and sequenced. Two other complete and two truncated ORFs were also identified. A truncated ORF encoding the quinoprotein ethanol dehydrogenase (exaA) was found upstream of the cytochrome c550 gene (exaB) and in reverse orientation. An ORF encoding a NAD(+)-dependent acetaldehyde dehydrogenase (exaC) was located downstream of the cytochrome c550 gene and in the same orientation. Another ORF showed similarity to the pqqA gene and a truncated ORF similarity to the pqqB gene, both involved in the biosynthesis of the prosthetic group PQQ. The organization of these genes was found to be different from the well-studied methanol oxidation system in methylotrophic bacteria. The deduced amino acid sequence of cytochrome c550 from P. aeruginosa showed some similarity to cytochrome c6 of the alga Chlamydomonas reinhardtii and the haem domain of quinohaemoprotein alcohol dehydrogenases of acetic acid bacteria, but no similarity to the soluble cytochrome cL of the quinoprotein methanol oxidation system of methylotrophs could be detected. A mutant of P. aeruginosa with an interrupted cytochrome c550 gene was unable to grow on ethanol, which proves that cytochrome c550 is an essential component of the ethanol oxidation system in this organism.  (+info)

Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin-synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. (36/17643)

A 1.7 kb DNA fragment isolated from an E. coli genomic library was able to complement the thiamin requirement of strains carrying the thiM, thiJ and thiD mutations. The three genes encode hydroxyethylthiazole kinase, hydroxymethylpyrimidine (HMP) kinase and phosphomethylpyrimidine (HMP-p) kinase, respectively. Sequence analysis revealed that the 1.7 kb fragment contained two ORFs of 708 bp and 801 bp. The former ORF complemented the thiM mutation and the latter ORF both the thiJ and thiD mutations. The latter ORF was cloned into the expression vector pET3a, and the encoded protein was purified through three successive column chromatographies. The purified protein was able to convert HMP to its monophosphate and the monophosphate to its pyrophosphate. These results suggest that the two distinct enzyme activities, HMP kinase and HMP-P kinase, are indeed a bifunctional enzyme encoded by a single gene, designated thiDIJ.  (+info)

Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. (37/17643)

The Corynebacterium glutamicum ack and pta genes encoding the acetate-activating enzymes acetate kinase and phosphotransacetylase were isolated, subcloned on a plasmid and re-introduced into Corynebacterium glutamicum. Relative to the wild-type, the recombinant strains showed about tenfold higher specific activities of both enzymes. Sequence analysis of a 3657 bp DNA fragment revealed that the ack and pta genes are contiguous in the corynebacterial chromosome, with pta upstream and the last nucleotide of the pta stop codon (TAA) overlapping the first of the ack start codon (ATG). The predicted gene product of pta consists of 329 amino acids (Mr 35242), that of ack consists of 397 amino acids (Mr 43098) and the amino acid sequences of the two polypeptides show up to 60 % (phosphotransacetylase) and 53% (acetate kinase) identity in comparison with respective enzymes from other organisms. Northern (RNA) blot hybridizations using pta- and ack-specific probes and transcriptional cat fusion experiments revealed that the two genes are transcribed as a 2.5 kb bicistronic mRNA and that the expression of this operon is induced when Corynebacterium glutamicum grows on acetate instead of glucose as a carbon source. Directed inactivation of the chromosomal pta and ack genes led to the absence of detectable phosphotransacetylase and acetate kinase activity in the respective mutants and to their inability to grow on acetate. These data indicate that no isoenzymes of acetate kinase and phosphotransacetylase are present in Corynebacterium glutamicum and that a functional acetate kinase/phosphotransacetylase pathway is essential for growth of this organism on acetate.  (+info)

The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. (38/17643)

The linked niiA and niaD genes of Aspergillus nidulans are transcribed divergently. The expression of these genes is subject to a dual control system. They are induced by nitrate and repressed by ammonium. AreA mediates derepression in the absence of ammonium and NirA supposedly mediates nitrate induction. Out of 10 GATA sites, a central cluster (sites 5-8) is responsible for approximately 80% of the transcriptional activity of the promoter on both genes. We show occupancy in vivo of site 5 by the AreA protein, even under conditions of repression. Sites 5-8 are situated in a pre-set nucleosome-free region. Under conditions of expression, a drastic nucleosomal rearrangement takes place and the positioning of at least five nucleosomes flanking the central region is lost. Remodelling is strictly dependent on the presence of an active areA gene product, and independent from the NirA-specific and essential transcription factor. Thus, nucleosome remodelling is independent from the transcriptional activation of the niiA-niaD promoter. The results presented cast doubts on the role of NirA as the unique transducer of the nitrate induction signal. We demonstrate, for the first time in vivo, that a GATA factor is involved directly in chromatin remodelling.  (+info)

Distribution of minichromosomes in individual Escherichia coli cells: implications for replication control. (39/17643)

A novel method was devised to measure the number of plasmids in individual Escherichia coli cells. With this method, involving measurement of plasmid-driven expression of the green fluorescent protein gene by flow cytometry, the copy number distribution of a number of different plasmids was measured. Whereas natural plasmids had fairly narrow distributions, minichromosomes, which are plasmids replicating only from a cloned oriC copy, have a wide distribution, suggesting that there is no copy number control for minichromosomes. When the selection pressure (kanamycin concentration) for minichromosomes was increased, the copy number of minichromosomes was also increased. At up to 30 minichromosomes per host chromosome, replication and growth of the host cell was unaffected. This is evidence that there is no negative element for initiation control in oriC and that there is no incompatibility between oriC located on the chromosome and minichromosome. However, higher copy numbers led to integration of the minichromosomes at the chromosomal oriC and to initiation asynchrony of the host chromosome. At a minichromosome copy number of approximately 30, the cell's capacity for synchronous initiation is exceeded and free minichromosomes will compete out the chromosome to yield inviable cells, unless the minichromosomes are incorporated into the chromosome.  (+info)

Xenopus cytosolic thyroid hormone-binding protein (xCTBP) is aldehyde dehydrogenase catalyzing the formation of retinoic acid. (40/17643)

Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.  (+info)