Repression of IL-4-induced gene expression by IFN-gamma requires Stat1 activation. (33/4035)

IFN-gamma antagonizes many physiological responses mediated by IL-4, including the inhibition of IL-4-induced IgE production. This event is largely mediated at the level of transcription. We observed that the IL-4 response element of the germline epsilon promoter is sufficient to confer IFN-gamma-mediated repression onto a reporter construct. The inhibitory effects were observed in both lymphoid and nonlymphoid cell lines. Stat1, which is activated by IFN-gamma, cannot recognize the Stat6-specific IL-4 response element in the epsilon promoter. Hence, competitive DNA binding does not seem to be the underlying mechanism for the inhibitory effect. This is supported by the observation that inhibition is not seen at early time points, but requires prolonged IFN-gamma treatment. IFN-gamma stimulation results in a loss of IL-4-induced Stat6 tyrosine phosphorylation, nuclear translocation, and DNA binding. Using the fibrosarcoma cell line U3A, which lacks Stat1, we demonstrated that the transcription activation function of Stat1 is required for the IFN-gamma-mediated repression. Repression was restored by overexpression of Stat1alpha, but not Stat1beta, in U3A cells. Treatment with IFN-gamma, but not IL-4, specifically up-regulates the expression of SOCS-1 (silencer of cytokine signaling), a recently characterized inhibitor of cytokine signaling pathways, such as IL-6 and IFN-gamma. Overexpression of SOCS-1 effectively blocks IL-4-induced Stat6 phosphorylation and transcription. This suggests that IFN-gamma-mediated repression of IL-4-induced transcription is at least in part mediated by SOCS-1.  (+info)

Nuclear factor-kappa B mediates TNF-alpha inhibitory effect on alpha 2(I) collagen (COL1A2) gene transcription in human dermal fibroblasts. (34/4035)

Among its plethora of activities as an inflammatory mediator, TNF-alpha has potent regulatory control on extracellular matrix production and degradation. Earlier studies have documented that TNF-alpha inhibits type I collagen gene (COL1A2) expression at the transcriptional level, but the characterization of the transcription factors involved has been elusive. In the present study, using transient cell transfection of human dermal fibroblasts with a battery of 5' end deletion/chloramphenicol acetyltransferase (CAT) reporter gene constructs, we have characterized the TNF-alpha response element of the COL1A2 promoter. The TNF-alpha response element was attributed to a specific region that comprises noncanonical activator protein-1 (AP-1) (CGAGTCA) and NF-kappa B (AGAGTTTCCC) binding sites. TNF-alpha effect was eliminated by a 2-bp substitution mutation in the NF-kappa B1 binding half site of the NF-kappa B cis element. Electrophoretic mobility shift assays (EMSA) showed that recombinant human NF-kappa B heterodimers as well as NF-kappa B1 and RelA homodimers, but not AP-1, were capable of binding this element. Further, EMSA with human fibroblast nuclear extracts demonstrated enhanced binding of a single, specific complex within 5 min of TNF-alpha stimulation, which reached a plateau by 1 h and was not affected by preincubation of cells with cycloheximide. Gel supershift assays identified the complex as the NF-kappa B (p50/p65) heterodimer, whereas Abs to nuclear factor of activated T cells (NF-AT) and Jun family members failed to recognize the complex. These data suggest that in fibroblasts TNF-alpha activates and initiates the nuclear translocation of NF-kappa B that binds a divergent NF-kappa B element and plays a critical role in the observed inhibition of alpha 2(I) collagen gene transcription.  (+info)

IFN-gamma regulation of the type IV class II transactivator promoter in astrocytes. (35/4035)

The transcriptional activation of class II MHC genes requires the class II transactivator (CIITA) protein, a regulator that is essential for both constitutive and IFN-gamma-inducible class II MHC expression. The CIITA gene is controlled by multiple independent promoters; two promoters direct constitutive expression, while another, the type IV CIITA promoter, mediates IFN-gamma-induced expression. We investigated the molecular regulation of IFN-gamma-induced type IV CIITA promoter activity in astrocytes. IFN-gamma inducibility of the type IV CIITA promoter is dependent on three cis-acting elements contained within a 154-bp fragment of the promoter; the proximal IFN-gamma activation sequence (GAS) element, the E box, and the proximal IFN regulatory factor (IRF) element. Two IFN-gamma-activated transcription factors, STAT-1alpha and IRF-1, bind the proximal GAS and IRF elements, respectively. The E box binds upstream stimulating factor-1 (USF-1), a constitutively expressed transcription factor. Furthermore, STAT-1alpha binding to the proximal GAS element is dependent on the binding of USF-1 to the adjacent E box. Functionally, the proximal IRF element is essential for IFN-gamma induction of type IV CIITA promoter activity, while the proximal GAS and E box elements contribute to the IFN-gamma inducibility of this promoter. In astrocytes, TNF-alpha enhances IFN-gamma-induced class II MHC transcription. Our results demonstrate that TNF-alpha does not enhance IFN-gamma-induced transcriptional activation of the type IV CIITA promoter, indicating that the enhancing effect of TNF-alpha is mediated downstream of CIITA transcription. These results define the molecular basis of IFN-gamma activation of the type IV CIITA promoter in astrocytes.  (+info)

DT-diaphorase activity in NSCLC and SCLC cell lines: a role for fos/jun regulation. (36/4035)

To assess the potential differential lung tumour expression of NAD(P)H:quinone reductase (NQO1), the human (h) NQO1 promoter was characterized in gene transfer studies. A deletion panel of 5' flanking hNQO1 promoter constructs was made and tested in transient transfection assays in NSCLC and SCLC cell lines. The largest hNQO1 construct (-1539/+115) containing the antioxidant response element (ARE), exhibited robust levels of reporter activity in the NSCLC (H460, H520, and A549) cell lines and expression was over 12 to 77-fold higher than the minimal (-259/+115) promoter construct. In contrast, there was little difference in promoter activity between the largest and minimal promoter construct in the SCLC (H146, H82 and H187) cell lines. Deletion of the sites for NFkappaB and AP-2 and the XRE did not significantly affect hNQO1 promoter activity in either the NSCLC or SCLC cell lines. Robust promoter activity in NSCLC lines was mediated by a 359 bp segment of the proximal promoter that contained a canonical AP-1 binding site, TGACTCAG, within the ARE. Gel supershift assays with various specific Fos/Jun antibodies identified Fra1, Fra2 and Jun B binding activity in NSCLC cells to a promoter fragment (-477 to -438) spanning the AP-1 site, whereas SCLC do not appear to express functional Fra or Jun B. These results suggest a possible role for AP-1 activity in the differential expression of hNQO1 in NSCLC.  (+info)

Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. (37/4035)

More than one transcription factor contributes to the Saccharomyces cerevisiae heat shock response. Many genes are induced through the activation of heat shock factor (Hsf1), a protein that is constitutively bound to heat shock promoter elements (HSEs). Other genes are switched on by Msn2/Msn4-dependent activation of a quite separate promoter element (the stress response element, STRE). While Hsf directs gene activation mainly in response to heat stress, STRE-directed transcription is stimulated not only by heat but also by several other stresses, starvation included. HSP30, encoding the plasma membrane heat shock protein, is shown in this study to be activated by several stresses. It is most strongly induced with heat shock, ethanol and weak organic acid exposure. The HSP30 promoter has no good agreement to the HSE consensus and its stress activation is unaffected by a mutation (hsf1-m3) that causes defective heat shock activation of Hsf1-dependent genes. Activation of HSP30 occurs with some, but not all, STRE-inducing stresses and is largely unaffected either by loss of the Msn2/Msn4 transcription factors or with mutation of all STRE-like consensus sequences of the promoter. Stress activation of HSP30 appears therefore to involve as yet unidentified components of the yeast transcriptional apparatus.  (+info)

Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. (38/4035)

The XPR2 gene from Yarrowia lipolytica encodes an inducible alkaline extracellular protease. Its complex regulation involves pH, carbon, nitrogen and peptones. Two previously identified upstream activating sequence (UAS) regions were analysed in a reporter system, outside the XPR2 context. Fragments from the UAS regions were inserted upstream of a minimal LEU2 promoter directing the expression of a reporter gene. The activity of the hybrid promoters was assessed following integration into the Y. lipolytica genome. This study confirmed the presence of two UASs composed of several interacting elements. Within the distal UAS (UAS1), a TUF/RAP1 binding site exhibited a UAS activity, which was enhanced by the presence of two adjacent repeats, overlapping sites similar to the CAR1 upstream repressing sequence from Saccharomyces cerevisiae. Within the proximal UAS (UAS2), the UAS activity required the interaction of both an ABF1-like binding site and a decameric repeat, containing Aspergillus nidulans PacC site consensus sequences. This decameric repeat was able to mediate repression due to carbon and/or nitrogen sources as well as pH-dependent activation. A study in the context of trans-regulatory mutations in the Y. lipolytica RIM101 gene showed that the PacC-like sites, potential binding sites for YlRim101p, were implicated in the derepression of UAS2-driven expression at neutral-alkaline pH. The in vivo response of the PacC-like decamers to external pH was dependent on the status of the pH-regulated activator YlRim101p, which is homologous to the A. nidulans PacC regulator. The carbon/nitrogen regulation imposed on the decamers was shown to be independent of YlRim101p and to override its effects.  (+info)

Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. (39/4035)

Shear stress, the tangential component of hemodynamic forces, plays an important role in endothelial remodeling. In this study, we investigated the role of Rho family GTPases Cdc42 and Rho in shear stress-induced signal transduction and cytoskeleton reorganization. Our results showed that shear stress induced the translocation of Cdc42 and Rho from cytosol to membrane. Although both Cdc42 and Rho were involved in the shear stress-induced transcription factor AP-1 acting on the 12-O-tetradecanoyl-13-phorbol-acetate-responsive element (TRE), only Cdc42 was sufficient to activate AP-1/TRE. Dominant-negative mutants of Cdc42 and Rho, as well as recombinant C3 exoenzyme, attenuated the shear stress activation of c-Jun NH2-terminal kinases (JNKs), suggesting that Cdc42 and Rho regulate the shear stress induction of AP-1/TRE activity through JNKs. Shear stress-induced cell alignment and stress fiber formation were inhibited by the dominant-negative mutants of Rho and p160ROCK, but not by the dominant-negative mutant of Cdc42, indicating that the Rho-p160ROCK pathway regulates the cytoskeletal reorganization in response to shear stress.  (+info)

Attenuated expression of the serum responsive T1 gene in ras transformed fibroblasts due to the inhibition of c-fos gene activity. (40/4035)

The T1 gene encodes a protein, which shares homology with the IL-1 receptors. In fibroblasts, T1 is induced by growth factors and in response to the onset of oncogene expression. The c-fos gene is transiently activated in these situations and was shown to be the major mediator of T1 gene induction. In contrast, the sustained expression of a ras oncogene in NIH3T3 cells resulted in the downregulation of basal T1 gene activity and the attenuation of T1 gene induction in response to mitogenic signals. Likewise, the immediate early genes encoding c-Fos, FosB, and Fra-2 are repressed in these cells. T1 gene repression could be overcome by the forced expression of c-fos in ras transformed fibroblasts. Thus, the lack of c-fos gene expression is the likely cause for ras mediated T1 gene repression. Fra-1, in contrast to the other three members of the Fos family, is permanently synthesized in high amounts in ras transformed NIH3T3 fibroblasts. We show that AP-1, which is abundant in these cells throughout the whole cell cycle, consists predominantly of Fra-1/c-Jun and Fra1/JunD heterodimers. We provide evidence that Fra1/c-Jun heterodimers are responsible for the repression of c-fos gene induction following serum stimulation. The introduction of a dominant negative version of c-Jun into ras transformed fibroblasts was able to rescue c-fos gene induction in response to serum stimulation, further demonstrating that AP-1 is indeed involved in c-fos gene repression. We conclude that oncogenic ras mediates the activation of the fra-1 gene which results in elevated AP-1 activity throughout the cell cycle. Fra-1 containing AP-1 complexes repress the c-fos and possibly other immediate early genes thereby preventing the induction of certain delayed early genes such as the T1 gene in response to mitogenic stimulation.  (+info)