The IRF-3 transcription factor mediates Sendai virus-induced apoptosis. (57/552)

Virus infection of target cells can result in different biological outcomes: lytic infection, cellular transformation, or cell death by apoptosis. Cells respond to virus infection by the activation of specific transcription factors involved in cytokine gene regulation and cell growth control. The ubiquitously expressed interferon regulatory factor 3 (IRF-3) transcription factor is directly activated following virus infection through posttranslational modification. Phosphorylation of specific C-terminal serine residues results in IRF-3 dimerization, nuclear translocation, and activation of DNA-binding and transactivation potential. Once activated, IRF-3 transcriptionally up regulates alpha/beta interferon genes, the chemokine RANTES, and potentially other genes that inhibit viral infection. We previously generated constitutively active [IRF-3(5D)] and dominant negative (IRF-3 DeltaN) forms of IRF-3 that control target gene expression. In an effort to characterize the growth regulatory properties of IRF-3, we observed that IRF-3 is a mediator of paramyxovirus-induced apoptosis. Expression of the constitutively active form of IRF-3 is toxic, preventing the establishment of stably transfected cells. By using a tetracycline-inducible system, we show that induction of IRF-3(5D) alone is sufficient to induce apoptosis in human embryonic kidney 293 and human Jurkat T cells as measured by DNA laddering, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay, and analysis of DNA content by flow cytometry. Wild-type IRF-3 expression augments paramyxovirus-induced apoptosis, while expression of IRF-3 DeltaN blocks virus-induced apoptosis. In addition, we demonstrate an important role of caspases 8, 9, and 3 in IRF-3-induced apoptosis. These results suggest that IRF-3, in addition to potently activating cytokine genes, regulates apoptotic signalling following virus infection.  (+info)

Membrane structure of the hepatitis B virus surface antigen particle. (58/552)

Expression of S protein, an envelope protein of hepatitis B virus, in the absence of other viral proteins, leads to the secretion of hepatitis B virus surface antigen (HBsAg) particles that are formed by budding from the endoplasmic reticulum membranes. The HBsAg particles produced by mouse fibroblast cells show a unique lipid composition, with 1,2-diacyl glycerophosphocholine being the dominant component. The lipid organization of the HBsAg particles was studied by measuring electron spin resonance (ESR) using various spin-labeled fatty acids, and the results were compared with a parallel study on HVJ (Sendai virus) and vesicles reconstituted with total lipids of the HBsAg particles (HBs-lipid vesicles). HVJ and the HBs-lipid vesicles showed typical ESR spectra of lipids arranged in a lipid bilayer structure. In contrast, the ESR spectra obtained with the HBsAg particles showed that the movement of lipids in the particle is severely restricted and a typical immobilized signal characteristic of tight lipid-protein interactions was also evident. Phosphatidylcholine (PC) in the HBsAg particles was not exchangeable by a PC-specific exchange protein purified from bovine liver, while phospholipase A(2) from Naja naja vemon was able to hydrolyze all the PC in the particles. These analyses suggest that the lipids in the HBsAg particles are not organized in a typical lipid bilayer structure, but are located at the surface of the particles and are in a highly immobilized state. Based on these observations we propose a unique lipid assembly and membrane structure model for HBsAg particles.  (+info)

Identification and characterization of cell lines with a defect in a post-adsorption stage of Sendai virus-mediated membrane fusion. (59/552)

In the early stage of infection, Sendai virus delivers its genome into the cytoplasm by fusing the viral envelope with the cell membrane. Although the adsorption of virus particles to cell surface receptors has been characterized in detail, the ensuing complex process that leads to the fusion between the lipid bilayers remains mostly obscure. In the present study, we identified and characterized cell lines with a defect in the Sendai virus-mediated membrane fusion, using fusion-mediated delivery of fragment A of diphtheria toxin as an index. These cells, persistently infected with the temperature-sensitive variant Sendai virus, had primary viral receptors indistinguishable in number and affinity from those of parental susceptible cells. However, they proved to be thoroughly defective in the Sendai virus-mediated membrane fusion. We also found that viral HN protein expressed in the defective cells was responsible for the interference with membrane fusion. These results suggested the presence of a previously uncharacterized, HN-dependent intermediate stage in the Sendai virus-mediated membrane fusion.  (+info)

Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. (60/552)

STAT1 and STAT2 are cellular transcription factors involved in interferon (IFN) signaling and are thus critical for the IFN-induced antiviral state. We have previously shown that the paramyxovirus Simian Virus 5 (SV5) blocks both type I and type II interferon (IFN) signaling by targeting STAT1 for proteasome-mediated degradation. To determine whether this is a feature common to all Paramyxoviridae, we examined the abilities of SV5, Sendai virus (SeV), human respiratory syncytial virus (RSV), and human parainfluenza viruses types 2 and 3 (hPIV2 and hPIV3, respectively) to block interferon signaling. The results showed that in reporter assays SV5, SeV, and hPIV3 blocked both type I and type II IFN-signaling; hPIV2 blocked type I but not type II IFN-signaling; and RSV failed to block either type I or type II IFN-signaling. In agreement with these results, SV5 and SeV inhibited the formation of the ISGF3 and GAF transcription complexes (essential for type I and type II signaling, respectively). Surprisingly, although hPIV3 inhibited IFN-induction of the ISGF3 complex, GAF complexes were detected in hPIV3-infected cells. hPIV2 also blocked the formation of the ISGF3 complex but not the GAF complex, whereas RSV failed to block the induction of either complex. SV5 was the only virus that caused the degradation of STAT1. Indeed, in SeV- and hPIV3-infected cells STAT1 was phosphorylated on tyrosine 701 (Y701), a characteristic of IFN receptor activation. However, consistent with these viruses blocking IFN signaling downstream of receptor activation, there was a specific reduction in the levels of serine 727 (S727)-phosphorylated forms of STAT1alpha in SeV- and hPIV3-infected cells. In contrast both (Y701)- and (S727)-phosphorylated forms of STAT1 were detected in hPIV2-infected cells but there was a specific loss of STAT2. Both STAT1 (including Y701- and S727-phosphorylated forms) and STAT2 could readily be detected in RSV-infected cells. Despite not being able to block type I or type II IFN signaling, RSV was able to replicate in human cells that produce and respond to IFN, suggesting that RSV must have an alternative method(s) for circumventing the IFN response. These results demonstrate that, although interference with IFN signaling is a common strategy among Paramyxovirinae, distinct virus-specific mechanisms are used to achieve this end.  (+info)

Sendai virosomes revisited: reconstitution with exogenous lipids leads to potent vehicles for gene transfer. (61/552)

A reliable new procedure is described for the reconstitution of Sendai viral envelopes suitable for gene transfer. Both fusion and hemagglutinin-neuraminidase glycoproteins were extracted from purified Sendai virus and reconstituted together with DNA in the presence of cholesterol:sphingomyelin:phosphatidylcholine:phosphatidylethanolamin e (Chol:SM:PC:PE) in a molar ratio of 3.5:3.5:2:1. Before reconstitution, the DNA to be transferred was condensed by pretreatment with polylysine. Exogenous lipid addition and the DNA-condensation step were essential for maximal size as well as for fusogenic activity of the resulting virosomes, the analysis of which revealed (1) the absence of any genomic material originating from Sendai virus, (2) the presence of fusogenic spikes in a functional orientation, (3) the encapsulation of reporter genes, and (4) high-transfer activity for plasmids carrying the green fluorescent protein (GFP) gene and double-stranded nucleotides into different mammalian cells. Transfer rates were up to 10-fold higher than those obtained with different cationic lipids. Gene delivery by means of our lipid-enriched Sendai virosomes extends the known gene transfer strategies, including those based on Sendai virus previously published.  (+info)

Antisense oligodeoxynucleotide inhibition of vascular angiotensin-converting enzyme expression attenuates neointimal formation: evidence for tissue angiotensin-converting enzyme function. (62/552)

It has been proposed that vascular angiotensin-converting enzyme (ACE) plays an important role in regulating vascular growth. Indeed, ACE inhibitors have been reported to prevent neointimal formation after vascular injury in a rat carotid artery model. However, classic pharmacological experiments cannot exclude the potential contributions of hemodynamics and the circulating renin-angiotensin system (RAS). In this study, we used antisense oligodeoxynucleotide (ODN) to obtain local blockade of vascular ACE expression without effects on systemic hemodynamics and circulating RAS. To increase the effectiveness of antisense action, we modified the hemagglutinating virus of Japan-liposome ODN delivery method by cotransfection with nuclear protein (high mobility group 1 [HMG-1]) and RNase H. In vitro experiments showed the enhanced efficacy of antisense ODN by cotransfection of HMG-1 and RNase H compared with ODN alone. In vivo transfection of antisense ACE ODNs into intact uninjured rat carotid artery resulted in a significant reduction of vascular ACE activity, and cotransfection of HMG-1 and RNase H showed further reduction. We examined the effects of local blockade of vascular ACE expression on neointimal formation after vascular injury. Transfection of antisense ACE ODNs resulted in the attenuation of neointimal formation, whereas sense and scrambled ODNs did not. Blood pressure, heart rate, and serum ACE activity were not affected by antisense treatment. The magnitude of vascular ACE inhibition correlated with the suppression of the neointimal size. Overall, this study demonstrates that local antisense ODN inhibition of vascular ACE expression attenuates neointimal formation independent of hemodynamics and circulating RAS. The results support the existence of a functional tissue angiotensin system in the rat vessel wall.  (+info)

Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. (63/552)

The fusion (F) protein of the paramyxovirus SV5 strain W3A causes syncytium formation without coexpression of the SV5 hemagglutinin-neuraminidase (HN) glycoprotein, whereas the F protein of the SV5 strain WR requires coexpression of HN for fusion activity. SV5 strains W3A and WR differ by three amino acid residues at positions 22, 443, and 516. The W3A F protein residues P22, S443, and V516 were changed to amino acids found in the WR F protein (L22, P443, and A516, respectively). Three single-mutants, three double-mutants, and the triple-mutant were constructed, expressed, and assayed for fusion using three different assays. Mutant P22L did not cause fusion under physiological conditions, but fusion was activated at elevated temperatures. Compared with the W3A F protein, mutant S443P enhanced the fusion kinetics with a faster rate and greater extent, and had a lower activation temperature. Mutant V516A had little effect on F protein-mediated fusion. The double-mutant P22L,S443P was capable of causing fusion, suggesting that the two mutations have opposing effects on fusion activation. The WR F protein requires coexpression of HN to cause fusion at 37 degrees C, and does not cause fusion at 37 degrees C when coexpressed with influenza virus hemagglutinin (HA); however, at elevated temperatures coexpression of WR F protein with HA resulted in fusion activation. In the crystal structure of the core trimer of the SV5 F protein (Baker, K. A., Dutch, R. E., Lamb, R.A., and Jardetzky, T. S. (1999). Mol. Cell 3, 309-319), S443 is the last residue (with interpretable electron density) in an extended chain region and the temperature factor for S443 is high, suggesting conformational flexibility at this point. Thus, the presence of prolines at residues 22 and 443 may destabilize the F protein and thereby decrease the energy required to trigger the presumptive conformational change to the fusion-active state.  (+info)

Fluorescent probe and permeability to cells of isopoly (S-carboxymethyl-L-cysteine) derivative of nucleic acid bases. (64/552)

Isopoly(S-carboxymethyl-L-cysteine) derivatives of nucleic acid bases were found to form stable complex with oligo-DNA in vitro. Fluorescent probed isopoly(S-carboxymethyl cysteine) derivatives of nucleic acid bases were prepared as antisense oligomers. The transfection of the oligomer into cells was carried out by HVJ-liposome method. Fluorescence was observed from the cells treated with HVJ-liposome including fluorescent probed oligomers.  (+info)