Determinants of blood pH in health and disease. (65/736)

An advanced understanding of acid-base physiology is as central to the practice of critical care medicine, as are an understanding of cardiac and pulmonary physiology. Intensivists spend much of their time managing problems related to fluids, electrolytes, and blood pH. Recent advances in the understanding of acid-base physiology have occurred as the result of the application of basic physical-chemical principles of aqueous solutions to blood plasma. This analysis has revealed three independent variables that regulate pH in blood plasma. These variables are carbon dioxide, relative electrolyte concentrations, and total weak acid concentrations. All changes in blood pH, in health and in disease, occur through changes in these three variables. Clinical implications for these findings are also discussed.  (+info)

Within-breath arterial PO2 oscillations in an experimental model of acute respiratory distress syndrome. (66/736)

Tidal ventilation causes within-breath oscillations in alveolar oxygen concentration, with an amplitude which depends on the prevailing ventilator settings. These alveolar oxygen oscillations are transmitted to arterial oxygen tension, PaO2, but with an amplitude which now depends upon the magnitude of venous admixture or true shunt, QS/QT. We investigated the effect of positive end-expiratory pressure (PEEP) on the amplitude of the PaO2 oscillations, using an atelectasis model of shunt. Blood PaO2 was measured on-line with an intravascular PaO2 sensor, which had a 2-4 s response time (10-90%). The magnitude of the time-varying PaO2 oscillation was titrated against applied PEEP while tidal volume, respiratory rate and inspired oxygen concentration were kept constant. The amplitude of the PaO2 oscillation, delta PaO2, and the mean PaO2 value varied with the level of PEEP applied. At zero PEEP, both the amplitude and the mean were at their lowest values. As PEEP was increased to 1.5 kPa, both delta PaO2 and the mean PaO2 increased to a maximum. Thereafter, the mean PaO2 increased but delta PaO2 decreased. Clear oscillations of PaO2 were seen even at the lowest mean PaO2, 9.5 kPa. Conventional respiratory models of venous admixture predict that these PaO2 oscillations will be reduced by the steep part of the oxyhaemoglobin dissociation curve if a constant pulmonary shunt exists throughout the whole respiratory cycle. The facts that the PaO2 oscillations occurred at all mean PaO2 values and that their amplitude increased with increasing PEEP suggest that QS/QT, in the atelectasis model, varies between end-expiration and end-inspiration, having a much lower value during inspiration than during expiration.  (+info)

Cardiovascular responses to nonrespiratory and respiratory arousals in a porcine model. (67/736)

Spontaneous and provoked nonrespiratory arousals can be accompanied by a patterned hemodynamic response. To investigate whether a patterned response is also elicited by respiratory arousals, we compared nonrespiratory arousals (NRA) to respiratory arousals (RA) induced by airway occlusion during non-rapid eye movement sleep. We monitored mean arterial blood pressure (MAP), heart rate, iliac and renal blood flow, and sleep stage in 7 pigs during natural sleep. Iliac and renal vascular resistance were calculated. Airway occlusions were obtained by manually inflating a chronically implanted tracheal balloon during sleep. The balloon was quickly deflated as soon as electroencephalogram arousal occurred. As previously reported, NRA generally elicited iliac vasodilation, renal vasoconstriction, little change in MAP, and tachycardia. In contrast, RA generally elicited iliac and renal vasoconstriction, an increase in MAP and tachycardia. The frequent occurrence of iliac vasoconstriction and arterial pressure elevation following RA but not NRA suggests that sleep state change alone does not account for the hemodynamic response to airway occlusion during sleep.  (+info)

Discharge frequencies of single motor units in human diaphragm and parasternal muscles in lying and standing. (68/736)

Single motor unit discharge was measured directly in diaphragm and parasternal intercostal muscles to determine whether neural drive to human inspiratory muscles changes between lying and standing. The final discharge frequency of diaphragmatic motor units increased slightly, by 1 Hz (12%; P < 0.01), when subjects were standing [182 units, median 9.1 Hz (interquartile range 7.6-11.3 Hz)] compared with lying supine [159 units, 8.1 Hz (6.6-10.3 Hz)]. However, this increase with standing occurred in only two of six subjects, in one of whom tidal volume increased significantly during standing. Parasternal intercostal motor unit final discharge frequencies did not differ between standing [116 units, 8.0 Hz (6.6-9.6 Hz)] and lying [124 units, 8.4 Hz (7.0-10.3 Hz)]. The discharge frequencies at the onset of inspiration did not differ between lying and standing for either muscle. A larger proportion of motor units in both inspiratory muscles had postinspiratory or tonic expiratory activity for lying compared with standing (15 vs. 4%; P < 0.05). We conclude that there is no major difference in the phasic inspiratory drive to the diaphragm with the change in posture.  (+info)

Effects of human pregnancy on cardiac autonomic function above and below the ventilatory threshold. (69/736)

This study examined the effects of human pregnancy on heart rate variability (HRV), spontaneous baroreflex (SBR) sensitivity, and plasma catecholamines at rest and during exercise. Subjects were 14 healthy, physically active pregnant women (PG; mean gestational age = 33.9 +/- 1.0 wk). Results were compared with an age-matched nonpregnant control group (NPG; n = 14) with similar characteristics. The electrocardiographic R-wave-R-wave interval and systolic blood pressure (via finger plethysmograph) were measured on a beat-to-beat basis at rest and during upright cycling at 60 and 110% of the ventilatory threshold (T(vent)). Parasympathetic nervous system (PNS) modulation (as reflected by HRV high-frequency/total power and SBR slope) was significantly reduced at rest in the PG vs. the NPG. During exercise, PNS modulation decreased significantly in both groups, but the magnitude of PNS withdrawal from rest to 110% T(vent) was smaller in the PG vs. NPG. Sympathetic nervous system (SNS) modulation (reflected by the low-frequency power-to-high-frequency power ratio) increased above resting values at 60 and 110% T(vent) in the NPG. SNS modulation at 110% T(vent) was significantly lower in the PG compared with the NPG. Plasma norepinephrine and epinephrine levels were also lower at 110% T(vent) in the PG. It was concluded that healthy pregnant women exhibit lower PNS modulation at rest and blunted SNS modulation during exercise above T(vent) in late gestation.  (+info)

The upper airway--the forgotten organ. (70/736)

The upper airway is an organ not often investigated. Relatively little is known about its complex functions, and misunderstandings abound. The paper by Thomachot et al in this issue provides an opportunity to ponder on this important organ. Although the main result seems to be negative, the study provides some interesting physiological information on the upper airway and how it works.  (+info)

Ion transport and regulation of respiratory tract fluid output in dogs. (71/736)

To investigate the regulation of respiratory tract fluid output (RTFO), we collected the RTFO in an anesthetized canine model after a series of pharmacological interventions (inhibition of Na(+)-K(+)-ATPase or Na(+)-K(+)-2Cl(-) cotransporter, 250 microl) and physiological challenges (ionic and/or osmotic perturbation in airway lumen, 250 microl). Whereas 250 microl of aerosolized 0.9% saline caused a transient increase in RTFO, a 250-microl bumetanide-induced increase in RTFO was evident for 18 min and a 250-microl acetylstrophanthidin-induced increase in RTFO persisted for at least 30 min. Dry air ventilation decreased the responses of RTFO to the saline (sham) and acetylstrophanthidin intervention but not the bumetanide intervention. Delivery of 250 mosmol/kgH(2)O ion-free mannitol (250 microl) caused marked increases in RTFO that were little affected by the administration of acetylstrophanthidin or bumetanide 30 min before these challenges. A 250-microl 550 mosmol/kgH(2)O ion-free mannitol challenge caused a more marked and prolonged increase in RTFO. Thus aerosol delivery of a low dose of a cardiac glycoside or a near-isosmotic, ion-free, impermeant osmolyte solution may be therapeutically useful by increasing the clearance of secretions from the tracheobronchial airways.  (+info)

Methodology for the measurement of mucociliary function in the mouse by scintigraphy. (72/736)

The objective of the study was to develop a scintigraphic method for measurement of airway mucociliary clearance in small laboratory rodents such as the mouse. Previous investigations have characterized the secretory cell types present in the mouse airway, but analysis of the mucus transport system has been limited to in vitro examination of tissue explants or invasive in vivo measures of a single airway, the trachea. Three methods were used to deposit insoluble, radioisotopic colloidal particles: oropharyngeal aspiration, intratracheal instillation, and nose-only aerosol inhalation. The initial distribution of particles within the lower respiratory tract was visualized by gamma-camera, and clearance of particles was followed intermittently over 6 h and at the conclusion, 24 h postdelivery. Subsets of mice underwent lavage for evidence of tissue inflammation, and others were restudied for reproducibility of the methods. The aspiration and instillation methods of delivery led to greater distributions of deposited activity within the lungs, i.e., approximately 60--80% of the total respiratory tract radioactivity, whereas the nose-only aerosol technique attained a distribution of 32% to the lungs. However, the aerosol technique maximized the fraction of particles that cleared the airway over a 24-h period, i.e, deposited onto airway epithelial surfaces and cleared by mucociliary function such that lung retention at 24 h averaged 57% for delivery by aerosol inhalation and > or =80% for the aspiration or intratracheal instillation techniques. Particle delivery methods did not cause lung inflammation/injury with use of inflammatory cells and chemoattractant cytokines as criteria. Scintigraphy can discern particle deposition and clearance from the lower respiratory tract in the mouse, is noninvasive and reproducible, and includes the capability for restudy and lung lavage when time course or chronic treatments are being considered.  (+info)