Hypoxemia-induced modification of troponin I and T in canine diaphragm. (41/966)

Impaired muscle function (fatigue) may result, in part, from modification of contractile proteins due to inadequate O(2) delivery. We hypothesized that severe hypoxemia would modify skeletal troponin I (TnI) and T (TnT), two regulatory contractile proteins, in respiratory muscles. Severe isocapnic hypoxemia (arterial partial pressure of O(2) of approximately 25 Torr) in six pentobarbital sodium-anesthetized spontaneously breathing dogs increased respiratory frequency and electromyographic activity of the diaphragm and internal and external obliques, with death occurring after 131-285 min. Western blot analysis revealed proteolysis of TnI and TnT, 17.5- and 28-kDa fragments, respectively, and higher molecular mass covalent complexes, one of which (42 kDa) contained TnI (or some fragment of it) and probably TnT in the costal and crural diaphragms but not the intercostal or abdominal muscles. These modifications of myofibrillar proteins may provide a molecular basis for contractile dysfunction, including respiratory failure, under conditions of limited O(2) delivery.  (+info)

Comparison of conventional surgical versus Seldinger technique emergency cricothyrotomy performed by inexperienced clinicians. (42/966)

BACKGROUND: Cricothyrotomy is the ultimate option for a patient with a life-threatening airway problem. METHODS: The authors compared the first-time performance of surgical (group 1) versus Seldinger technique (group 2) cricothyrotomy in cadavers. Intensive care unit physicians (n = 20) performed each procedure on two adult human cadavers. Methods were compared with regard to ease of use and anatomy of the neck of the cadaver. Times to location of the cricothyroid membrane, to tracheal puncture, and to the first ventilation were recorded. Each participant was allowed only one attempt per procedure. A pathologist dissected the neck of each patient and assessed correctness of position of the tube and any injury inflicted. Subjective assessment of technique and cadaver on a visual analog scale from 1 (easiest) to 5 (worst) was conducted by the performer. RESULTS: Age, height, and weight of the cadavers were not different. Subjective assessment of both methods (2.2 in group 1 vs. 2.4 in group 2) and anatomy of the cadavers (2.2 in group 1 vs. 2.4 in group 2) showed no statistically significant difference between both groups. Tracheal placement of the tube was achieved in 70% (n = 14) in group 1 versus 60% (n = 12) in group 2 (P value not significant). Five attempts in group 2 had to be aborted because of kinking of the guide wire. Time intervals (mean +/- SD) were from start to location of the cricothyroid membrane 7 +/- 9 s (group 1) versus 8 +/- 7s (group 2), to tracheal puncture 46 +/- 37s (group 1) versus 30 +/- 28s (group 2), and to first ventilation 102 +/- 42s (group 1) versus 100 +/- 46s (group 2) (P value not significant). CONCLUSIONS: The two methods showed equally poor performance.  (+info)

Measurement of thoracoabdominal asynchrony: importance of sensor sensitivity to cross section deformations. (43/966)

Discrepancies in the assessment of thoracoabdominal asynchrony are observed depending on the choice of respiratory movement sensors. We test the hypothesis that these discrepancies are due to a different dependence of the sensors on cross-sectional perimeter and area variations of the chest wall. First, we study the phase shift between perimeter and area (Phi(PA)) for an elliptical model, which is deformed by sinusoidal changes of its principal axes. We show that perimeter and area vary sinusoidally in the physiological range of deformations, and we discuss how Phi(PA) depends on the ellipticity of the cross section, on the ratio of transverse and dorsoventral movement amplitudes, and on their phase difference. Second, we compute the relationship between perimeter, area, and the output of the inductive sensor, and we proceed by comparing inductive plethysmography with strain gauges for several cross section deformations. We demonstrate that both sensors can provide different phase information for identical cross section deformations and, hence, can estimate thoracoabdominal asynchrony differently. Furthermore, the complex dependence of the inductive sensor on perimeter and area warns against this sensor for the evaluation of thoracoabdominal asynchrony.  (+info)

Functional, cellular, and biochemical adaptations to elastase-induced emphysema in hamster medial scalene. (44/966)

The scalene has been reported to be an accessory inspiratory muscle in the hamster. We hypothesize that with the chronic loads and/or dynamic hyperinflation associated with emphysema (Emp), the scalene will be actively recruited, resulting in functional, cellular, and biochemical adaptations. Emp was induced in adult hamsters. Inspiratory electromyogram (EMG) activity was recorded from the medial scalene and costal diaphragm. Isometric contractile and fatigue properties were evaluated in vitro. Muscle fibers were classified histochemically and immunohistochemically. Individual fiber cross-sectional areas (CSA) and succinate dehydrogenase (SDH) activities were determined quantitatively. Myosin heavy chain (MHC) isoforms were identified by SDS-PAGE, and their proportions were determined by scanning densitometry. All Emp animals exhibited spontaneous scalene inspiratory EMG activity during quiet breathing, whereas the scalene muscles of controls (Ctl) were silent. There were no differences in contractile and fatigue properties of the scalene between Ctl and Emp. In Emp, the relative amount of MHC(2A) was 15% higher whereas that of MHC(2X) was 14% lower compared with Ctl. Similarly, the proportion of type IIa fibers increased significantly in Emp animals with a concomitant decrease in IIx fibers. CSA of type IIx fibers were significantly smaller in Emp compared with Ctl. SDH activities of all fiber types were significantly increased by 53 to 63% in Emp. We conclude that with Emp the actively recruited scalene exhibits primary-like inspiratory activity in the hamster. Adaptations of the scalene with Emp likely relate both to increased loads and to factors intrinsic to muscle architecture and chest mechanics.  (+info)

Corticosteroids decrease mRNA levels of SERCA pumps, whereas they increase sarcolipin mRNA in the rat diaphragm. (45/966)

1. In order to explore the potential role of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA)-type pumps and of their modulators phospholamban (PLB) and sarcolipin (SLN) in the functional alterations of the diaphragm induced by corticosteroid treatment, expression of SERCA, PLB and SLN was assessed by RT-PCR in the diaphragm of rats treated daily for 5 days either with triamcinolone (80 mg kg-1, n = 8) or with saline (control; 0.6 ml, n = 8). 2. Triamcinolone treatment reduced the normalised overall amount of all SERCA mRNA in diaphragm by 70 % compared to controls (P < 0.05). This reduction was accounted for by a relatively larger decrease in the SERCA1 mRNA (-69 %, P < 0.05) whilst the decrease in SERCA2 mRNA (-49 %, P = 0.09) did not reach statistical significance. As a result the relative proportion of SERCA2 mRNA was increased from 43 +/- 7 % in control diaphragm to 52 +/- 4 % after triamcinolone treatment (P < 0.05). 3. Only the adult isoform of SERCA1 (i.e. SERCA1a) mRNA was found in the diaphragm of the 15-week-old control rats. Furthermore, triamcinolone treatment resulted in reduced levels of SERCA2a (-40 %, P < 0.05) and increased levels of SLN mRNA (+100 %, P < 0.05), while the decrease in PLB mRNA (-31 %, P = 0.277) did not reach statistical significance. SERCA1b, SERCA2b and SERCA3 mRNA levels fell below the detection limit in the diaphragm of both control and triamcinolone-treated rats. 4. Compared to control diaphragm, control rat heart showed a relatively high PLB/(SERCA1 + SERCA2) mRNA ratio of 7.88 while this ratio amounted only to 0.16 in control extensor digitorum longus (EDL) muscle. Remarkably, the SLN/(SERCA1 + SERCA2) mRNA ratio in normal cardiac muscle (0.96) was nearly the same as in diaphragm, but in EDL it amounted to only 0.05 that in diaphragm. This indicates the very low expression of SLN in rat EDL. 5. These data reveal that considerable alterations in SERCA mRNA levels accompany the functional changes seen in diaphragm after corticosteroid treatment. The relatively larger decrease in SERCA1 mRNA is in agreement with the selective type II fibre atrophy previously observed in the diaphragm of triamcinolone-treated rats, but the magnitude of SERCA alterations is more pronounced than expected on the basis of the structural changes in the diaphragm. The increase in SLN mRNA levels may represent a compensatory mechanism.  (+info)

Respiratory muscle activity in patients with COPD walking to exhaustion with and without pressure support. (46/966)

The function of the diaphragm and other respiratory muscles during exercise in chronic obstructive pulmonary disease (COPD) remains controversial and few data exist regarding respiratory muscle pressure generation in this situation. The inspiratory pressure/time products of the oesophageal and transdiaphragmatic pressure, and the expiratory gastric pressure/time product during exhaustive treadmill walking in 12 patients with severe COPD are reported. The effect of noninvasive positive pressure ventilation during treadmill exercise was also examined in a subgroup of patients (n=6). During free walking, the inspiratory pressure/time products rose early in the walk and then remained level until the patients were forced to stop because of intolerable dyspnoea. In contrast, the expiratory gastric pressure/time product increased progressively throughout the walk. When patients walked the same distance assisted by noninvasive positive pressure ventilation, a substantial reduction was observed in the inspiratory and expiratory pressure/time products throughout the walk. When patients walked with positive pressure ventilation for as long as they could, the pressure/time products observed at exercise cessation were lower than those observed during exercise cessation after free walking. It is concluded that, in severe chronic obstructive pulmonary disease, inspiratory muscle pressure generation does not increase to meet the demands imposed by exhaustive exercise, whereas expiratory muscle pressure generation rises progressively. Inspiratory pressure support was shown to substantially unload all components of the respiratory muscle pump.  (+info)

Cartilaginous airway wall dimensions and airway resistance in cystic fibrosis lungs. (47/966)

It is not clear how airway pathology relates to the severity of airflow obstruction and increased bronchial responsiveness in cystic fibrosis (CF) patients. The aim of this study was to measure the airway dimensions of CF patients and to estimate the importance of these dimensions to airway resistance using a computational model. Airway dimensions were measured in lungs obtained from CF patients who had undergone lung transplantation (n=12), lobectomy (n=1), or autopsy (n=4). These dimensions were compared to those of airways from lobectomy specimens from 72 patients with various degrees of chronic obstructive pulmonary disease (COPD). The airway dimensions of the CF and COPD patients were introduced into a computational model to study their effect on airway resistance. The inner wall and smooth muscle areas of peripheral CF airways were increased 3.3- and 4.3-fold respectively compared to those of COPD airways. The epithelium was 53% greater in height in peripheral CF airways. The sensitivity and maximal plateau resistance of the computed dose/response curves were substantially increased in the CF patients compared to COPD patients. The changes in airway dimensions of cystic fibrosis patients probably contribute to the severe airflow obstruction, and to increased bronchial responsiveness, in these patients.  (+info)

Mechanical strain memory in airway smooth muscle. (48/966)

We investigated the effect of a single rapid stretch on poststretch force and myosin phosphorylation in bovine tracheal smooth muscle. When unstimulated muscle strips were stretched from suboptimal length to optimal length (L(o)), poststretch steady-state force was not significantly different from that of unstretched control at L(o). However, when carbachol-activated muscle strips were stretched from suboptimal length to L(o), poststretch force and myosin phosphorylation were lower than control and significantly correlated with initial length. When poststretch muscle strips were allowed to relax for 1 h and then activated by K(+) depolarization, the developed force remained significantly correlated with initial length. When the same strain was applied in 23 increments to minimize peak stress, poststretch force and myosin phosphorylation increased significantly, approaching the levels expected at L(o). Furthermore, poststretch force development increased after each cycle of contraction and relaxation, approaching the control level after four cycles. These results suggest that activated airway smooth muscle cells can retain relatively precise memory of past strain when they are stretched rapidly with high stress.  (+info)