Ablation of tumor necrosis factor receptor type I (p55) alters oxygen-induced lung injury. (49/2809)

Hyperoxic lung injury, believed to be mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines, complicates the care of many critically ill patients. The cytokine tumor necrosis factor (TNF)-alpha is induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. Both TNF-alpha treatment and blockade with anti-TNF antibodies increased survival in mice exposed to hyperoxia. In the current study, to determine if pulmonary oxygen toxicity is dependent on either of the TNF receptors, type I (TNFR-I) or type II (TNFR-II), TNFR-I or TNFR-II gene-ablated [(-/-)] mice and wild-type control mice (WT; C57BL/6) were studied in >95% oxygen. There was no difference in average length of survival, although early survival was better for TNFR-I(-/-) mice than for either TNFR-II(-/-) or WT mice. At 48 h of hyperoxia, slightly more alveolar septal thickening and peribronchiolar and periarteriolar edema were detected in WT than in TNFR-I(-/-) lungs. By 84 h of oxygen exposure, TNFR-I(-/-) mice demonstrated greater alveolar debris, inflammation, and edema than WT mice. TNFR-I was necessary for induction of cytokine interleukin (IL)-1beta, IL-1 receptor antagonist, chemokine macrophage inflammatory protein (MIP)-1beta, MIP-2, interferon-gamma-induced protein-10 (IP-10), and monocyte chemoattractant protein (MCP)-1 mRNA in response to intratracheal administration of recombinant murine TNF-alpha. However, IL-1beta, IL-6, macrophage migration inhibitory factor, MIP-1alpha, MIP-2, and MCP-1 mRNAs were comparably induced by hyperoxia in TNFR-I(-/-) and WT lungs. In contrast, mRNA for manganese superoxide dismutase and intercellular adhesion molecule-1 were induced by hyperoxia only in WT mice. Differences in early survival and toxicity suggest that pulmonary oxygen toxicity is in part mediated by TNFR-I. However, induction of specific cytokine and chemokine mRNA and lethality in response to severe hyperoxia was independent of TNFR-I expression. The current study supports the prediction that therapeutic efforts to block TNF-alpha receptor function will not protect against pulmonary oxygen toxicity.  (+info)

DNA breakage in asbestos-treated normal and transformed (TSV40) rat pleural mesothelial cells. (50/2809)

Asbestos has been shown to induce cell cycle arrest, DNA repair and some abnormalities consistent with DNA damage but not DNA breakage. The purpose of the study was to investigate DNA breakage in asbestos-exposed rat pleural mesothelial cells (RPMC). RPMC were compared with their transformed counterparts, RPMC-TSV40 (i.e. p53-inactivated by infection with a retroviral recombinant encoding the SV40 large T antigen), as in the latter cells the cell cycle does not arrest and DNA repair is deficient due to ineffective p53-dependent cell cycle control. RPMC and RPMC-TSV40 were exposed to chrysotile and crocidolite asbestos and also to camptothecin for comparison. The presence of DNA breakage was determined using the single cell gel (Comet) assay with alkaline electrophoresis and quantified by measuring comet tail length (TL) and the percentage of total DNA in the tail and calculating tail moment (TM). We found that comets were generated by both types of asbestos in RPMC and in RPMC-TSV40 as well as by camptothecin in RPMC. On a per weight basis, chrysotile induced more abnormalities in comet parameters than did crocidolite. The comet TL and TM increased with fibre concentration, although less so with crocidolite than with chrysotile. When exposed to chrysotile at similar concentrations, RPMC consistently showed more abnormal comet parameters than did RPMC-TSV40. We concluded that asbestos causes DNA breakage and suggest that some of the DNA breakage measured was due to repair mechanisms in the normal RPMC.  (+info)

Diesel exhaust particles up-regulate expression of intercellular adhesion molecule-1 (ICAM-1) in human bronchial epithelial cells. (51/2809)

Epidemiological and experimental studies suggest that diesel exhaust particles (DEP) may play an active role in the increased respiratory mortality and morbidity. We have shown that DEP augmented the production of inflammatory cytokines by human airway epithelial cells in vitro. ICAM-1 has been shown to play an important role in the local accumulation of inflammatory cells. We studied the effect of DEP on ICAM-1 gene expression and surface expression in human bronchial epithelial cell line BEAS-2B. DEP (5-50 microg/ml) showed a stimulatory effect on ICAM-1 mRNA levels as evaluated by reverse transcription-polymerase chain reaction (RT-PCR). Flow cytometric analysis demonstrated an increased ICAM-1 expression on the epithelial cell surfaces. The soluble form of ICAM-1 molecules was also increased by the stimulation of DEP. In vitro neutrophil attachment onto DEP-stimulated epithelial cells was augmented, which was partially blocked by anti-ICAM-1 neutralizing antibody. Finally, these events were significantly inhibited by pretreatment with anti-oxidants pyrrolidine dithiocarbamate and N-acetyl cysteine, and p38 mitogen activated protein kinase (MAPK) inhibitor SB203580. These findings suggested that DEP induced up-regulation of ICAM-1 gene, and this process might be largely dependent on oxidant-mediated NF-kappaB activation and p38-MAPK pathways.  (+info)

Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. (52/2809)

The O(2) and redox-sensitive transcription factors hypoxia inducible factor-1alpha (HIF-1alpha) and nuclear factor-kappaB (NF-kappaB) are differentially regulated in the alveolar epithelium over fetal to neonatal oxygen tensions. We have used fetal alveolar type II epithelial cells to monitor their regulation in association with redox responsiveness to antioxidant pretreatment in vitro. N-Acetyl-l-cysteine, a glutathione (GSH) precursor and a potent scavenger of reactive oxygen species, induced HIF-1alpha and ameliorated NF-kappaB nuclear abundance and DNA binding activity, respectively, in a dose-dependent manner. Analysis of variations in glutathione homeostasis at ascending DeltapO(2) regimen with N-acetyl-(L)-cysteine reveals increased GSH at the expense of the oxidized form of glutathione (GSSG), thereby shifting GSH/GSSG into reduction equilibrium. Pyrrolidine dithiocarbamate (PDTC), which exerts both antioxidant and pro-oxidant effects, provoked a substantial increase in HIF-1alpha nuclear abundance, with no apparent effect on its activation. PDTC reduced NF-kappaB nuclear abundance and its inhibitory effects on binding activity are dose-dependent. Assessment of glutathione homeostasis with PDTC shows increasing levels of GSSG at the expense of GSH, lowering GSH/GSSG in favor of an oxidative equilibrium. Our results indicate the hypoxic activation of HIF-1alpha and the hyperoxic induction of NF-kappaB in the fetal epithelium is redox-sensitive and, thus, tightly regulated by the GSH/GSSG equilibrium. This highlights glutathione as a key regulatory component for determining genetic responsiveness to oxidant/antioxidant imbalance in normal lung development and pathophysiological conditions.  (+info)

Nedocromil sodium inhibits canine adenovirus bronchiolitis in beagle puppies. (53/2809)

Nedocromil sodium is a nonsteroidal anti-inflammatory drug used to control asthmatic attacks. Our hypothesis is that nedocromil sodium inhibits virus-induced airway inflammation, a common trigger of asthma. We nebulized nedocromil sodium into beagle dogs (n = 10, mean +/- SEM ages: 149 +/- 13 days) before and after inoculation with canine adenovirus type 2 (CAV2). Control dogs (n = 10) received saline aerosols and were either infected with CAV2 (Sal/CAV2, n = 7, mean +/- SEM ages: 140 +/- 11 days) or were not infected (Sal/Sal, n = 3, ages: 143 +/- 0 days). All dogs were anesthetized with choralose (80 mg/kg i.v.), intubated, and mechanically ventilated. Pulmonary function tests and bronchoalveolar lavage (BAL) were performed using standard techniques. Pulmonary function tests revealed no significant change between the nedocromil sodium and non-nedocromil-treated groups. The percentage of infected bronchioles was quantitated as the number of inflamed airways of 40 bronchioles examined times 100 for each dog. Nedocromil-treated dogs had significantly (p < 0.05) less mucosal inflammation (mean +/- SEM, 39% +/- 5%), epithelial denudation (36% +/- 5%), and BAL neutrophilia (11 +/- 3) than did Sal/CAV2 dogs (51% +/- 6%, 57% +/- 4%, and 33% +/- 8%, respectively). We concluded that pretreatment with nedocromil sodium aerosols attenuated CAV2-induced airway inflammation in these beagle puppies.  (+info)

Differential effects of UTP and ATP on ion transport in porcine tracheal epithelium. (54/2809)

Isolated segments of porcine tracheal epithelium were mounted in Ussing chambers, current required to maintain transepithelial potential difference at 0 mV (short circuit current, I(SC)) was monitored and effects of nucleotides upon I(SC) were studied. Mucosal UTP (100 microM) evoked a transient rise in I(SC) that was followed by a sustained fall below basal I(SC) maintained for 30 min. Mucosal ATP (100 microM) also stimulated a transient rise in I(SC) but in contrast to UTP did not inhibit basal I(SC). Submucosal UTP and ATP both transiently increased I(SC). UTP-prestimulated epithelia were refractory to ATP but prestimulation with ATP did not abolish the response to UTP. The epithelia thus appear to express two populations of apical receptors allowing nucleotides to modulate I(SC). The UTP-induced rise was reduced by pretreatment with either bumetanide (100 microM), diphenylamin-2-carboxylic acid (DPC, 1 mM), or Cl(-) and HCO(3)(-)-free solution whilst the fall was abolished by amiloride pretreatment. Thapsigargin (0.3 microM) abolished the UTP-induced increase in I(SC) but not the subsequent decrease. Staurosporine (0.1 microM) inhibited basal I(SC) and blocked UTP-induced inhibition of I(SC). Inhibitors of either protein kinase C (PKC) (D-erythro sphingosine) or PKA (H89) had no effect. This study suggests that UTP stimulates Cl(-) secretion and inhibits basal Na(+) absorption. ATP has a similar stimulatory effect, which may be mediated by activation of P2Y(2) receptors and an increase in [Ca(2+)](in), but no inhibitory effect, which is likely mediated by activation of a pyrimidine receptor and possible inhibition of a protein kinase other than PKC or PKA.  (+info)

Basal secretion of lysozyme from human airways in vitro. (55/2809)

The aim of this study was to examine the basal release of lysozyme from isolated human lung tissues. Measurements of lysozyme in the fluids derived from lung preparations were performed using a rate-of-lysis assay subsequent to acidification of the biological samples. Lysozyme released from bronchial preparations into fluids was greater than that observed for parenchymal tissues. The lysozyme quantities detected in bronchial fluids were not modified by removal of the surface epithelium. Furthermore, the quantities of lysozyme in bronchial fluids was correlated with the size of the bronchial preparations. These results suggest that the lysozyme was principally secreted by the human bronchi (submucosal layer) rather than by parenchyma tissues and that a greater release was observed in the proximal airways.  (+info)

Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. (56/2809)

Morphogenesis of the mouse lung involves reciprocal interactions between the epithelial endoderm and the surrounding mesenchyme, leading to an invariant early pattern of branching that forms the basis of the respiratory tree. There is evidence that Fibroblast growth factor 10 (Fgf10) and Bone Morphogenetic Protein 4 (Bmp4), expressed in the distal mesenchyme and endoderm, respectively, play important roles in branching morphogenesis. To examine these roles in more detail, we have exploited an in vitro culture system in which isolated endoderm is incubated in Matrigel(TM) substratum with Fgf-loaded beads. In addition, we have used a Bmp4(lacZ) line of mice in which lacZ faithfully reports Bmp4 expression. Analysis of lung endoderm in vivo shows a dynamic pattern of Bmp4(lacZ) expression during bud outgrowth, extension and branching. In vitro, Fgf10 induces both proliferation and chemotaxis of isolated endoderm, whether it is derived from the distal or proximal lung. Moreover, after 48 hours, Bmp4(lacZ) expression is upregulated in the endoderm closest to the bead. Addition of 30-50 ng/ml of exogenous purified Bmp4 to the culture medium inhibits Fgf-induced budding or chemotaxis, and inhibits overall proliferation. By contrast, the Bmp-binding protein Noggin enhances Fgf-induced morphogenesis. Based on these and other results, we propose a model for the combinatorial roles of Fgf10 and Bmp4 in branching morphogenesis of the lung.  (+info)