Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells. (17/473)

A unique property of the group I metabotropic glutamate receptor (mGluR)-induced depolarization in hippocampal cells is that the amplitude of the depolarization is larger when the response is elicited at more depolarized membrane potentials. Our understanding of the conductance mechanism underlying this voltage-dependent response is incomplete. Through the use of current-clamp and single-electrode voltage-clamp recordings in guinea pig hippocampal slices, we examined the group I mGluR-induced depolarization in CA3 pyramidal cells. The group I mGluR agonists (S)-3-hydroxyphenylglycine and (S)-3,5-dihydroxyphenylglycine turned on a voltage-gated inward current (I(mGluR(V))), which was pharmacologically distinct from the voltage-gated sodium and calcium currents intrinsic to the cells. I(mGluR(V)) was a slowly activating, noninactivating current with a threshold at about -75 mV. In addition to the activation of I(mGluR(V)), group I mGluR stimulation also produced a voltage-independent decrease in the K(+) conductance. Our results suggest that the depolarization induced by group I mGluR activation is generated by two ionic mechanisms-a heretofore unrecognized voltage-gated inward current (I(mGluR(V))) that is turned on by depolarization and a voltage-insensitive inward current that results from a turn-off of the K(+) conductance. The low-threshold and noninactivating properties of I(mGluR(V)) allow the current to play a significant role in setting the resting potential and firing pattern of CA3 pyramidal cells.  (+info)

Shorter survival of SDF1-3'A/3'A homozygotes linked to CD4+ T cell decrease in advanced human immunodeficiency virus type 1 infection. (18/473)

The SDF-1 3'A allelic polymorphism has been reported to influence either positively or negatively the progression of human immunodeficiency virus type 1 (HIV-1) disease. Therefore, the SDF-1 genotype of 729 HIV-1-infected individuals pooled from 3 distinct cohorts was determined. A statistically nonsignificant association between the SDF1-3'A/3'A genotype and accelerated disease progression was evident among seroconverters (n=319), but a striking correlation of decreased survival after either diagnosis of AIDS according to the 1993 definition or loss of CD4(+) T cell counts <200 was observed. The relative hazards for SDF1-3'A/3'A homozygotes, compared with heterozygotes and wild-type homozygotes were 2.16 (P=.0047), for time from diagnosis according to the 1993 Centers for Disease Control and Prevention AIDS case definition (AIDS-'93) to death, and 3.43 (P=.0001), for time from CD4(+) T cells <200 to death. Because no difference in survival was observed after diagnosis according to AIDS-'87, the association of the SDF1-3'A/3'A genotype with the accelerated progression of late-stage HIV-1 disease appears to be explained for the most part by the loss of CD4(+) T lymphocytes.  (+info)

Developmental regulation of hippocampal excitatory synaptic transmission by metabotropic glutamate receptors. (19/473)

The aims of this study were, to use agonists selective for the 3 mGlu receptor groups to identify developmental changes in their effects, and to assess the usefulness of proposed selective antagonists as pharmacological tools. Hippocampal slices (400 microm) were prepared from neonate (9 - 14 days) and young adult (5 - 7 weeks) Sprague-Dawley rats. Field excitatory postsynaptic potentials (fEPSP) were recorded from CA1. DHPG (100 microM), a group I agonist, produced a slowly developing enhancement of fEPSP slope in slices from adults. In slices from neonates, DHPG (75 microM) depressed fEPSP slope. DCG-IV (500 nM), a group II agonist, did not affect the fEPSP recorded from slices from adults whereas perfusion in neonate slices produced a sustained depression. The group III agonist L-AP4 (50 microM) was ineffective in adult slices but depressed fEPSP slope in slices prepared from neonates. DHPG-induced depression of fEPSP slope was inhibited by 4-CPG (400 microM), a group I antagonist, but was unaffected by MCCG (500 microM) and MAP4 (500 microM), group II and III receptor antagonists respectively. MCCG but not MAP4 antagonized the effects of DCG-IV with 4-CPG producing variable effects. The effect of L-AP4 was unaffected by MCCG, blocked by MAP4, and enhanced by 4-CPG. The results show that the effects of the agonists for all groups of mGlu receptors are developmentally regulated. Furthermore, MCCG and MAP4 behave as effective and selective antagonists for group II and group III mGlu receptors respectively, whereas the usefulness of 4-CPG as a group I antagonist may be limited.  (+info)

Role of Ca2+ stores in metabotropic L-glutamate receptor-mediated supralinear Ca2+ signaling in rat hippocampal neurons. (20/473)

The role of metabotropic l-glutamate (mGlu) receptors in supralinear Ca(2+) signaling was investigated in cultured hippocampal cells using Ca(2+) imaging techniques and whole-cell voltage-clamp recording. In neurons, but not glia, global supralinear Ca(2+) release from intracellular stores was observed when the mGlu receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) was combined with elevated extracellular K(+) levels (10.8 mm), moderate depolarization (15-30 mV), or NMDA (3 micrometer). There was a delay (2-8 min) before the stores were fully charged, and the enhancement persisted for a short period (up to 10 min) after removal of the store-loading stimulus. Studies with the mGlu receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine demonstrated that these effects were mediated by activation of the mGlu(5) receptor subtype. The L-type voltage-gated Ca(2+) channel antagonist nifedipine (10 micrometer) substantially reduced responses to DHPG obtained in the presence of elevated extracellular K(+) but not NMDA. This suggests that the Ca(2+) that is required to load the stores can enter either through L-type voltage-gated Ca(2+) channels or directly through NMDA receptors. The findings that both depolarization and NMDA receptor activation can facilitate mGlu receptor Ca(2+) signaling adds considerable flexibility to the processes that underlie activity-dependent changes in synaptic strength. In particular, a temporal separation between the store-loading stimulus and the activation of mGlu receptors could be used as a recency detector in neurons.  (+info)

Structural characterization and thermal stability of Notothenia coriiceps metallothionein. (21/473)

Fish and mammalian metallothioneins (MTs) differ in the amino acid residues placed between their conserved cysteines. We have expressed the MT of an Antarctic fish, Notothenia coriiceps, and characterized it by means of multinuclear NMR spectroscopy. Overall, the architecture of the fish MT is very similar to that of mammalian MTs. However, NMR spectroscopy shows that the dynamic behaviour of the two domains is markedly different. With the aid of absorption and CD spectroscopies, we studied the conformational and electronic features of fish and mouse recombinant Cd-MT and the changes produced in these proteins by heating. When the temperature was increased from 20 to 90 degrees C, the Cd-thiolate chromophore absorbance at 254 nm of mouse MT was not modified up to 60 degrees C, whereas the absorbance of fish MT decreased significantly starting from 30 degrees C. The CD spectra also changed quite considerably with temperature, with a gradual decrease of the positive band at 260 nm that was more pronounced for fish than for mouse MT. The differential effect of temperature on fish and mouse MTs may reflect a different stability of metal-thiolate clusters of the two proteins. Such a conclusion is also corroborated by results showing differences in metal mobility between fish and mouse Zn-MT.  (+info)

FR191512, a novel anti-influenza agent isolated from a fungus strain No.17415. I. Taxonomy, fermentation, isolation, physico-chemical properties and structure elucidation. (22/473)

In the course of our screening for anti-influenza agents of microbial origin, FR191512 was isolated from the cultured broth of fungus strain No. 17415 as colorless powder. The structure of FR191512 was determined by several spectroscopic experiments as a novel polyphenolic compound. This compound showed potent antiviral activity against influenza A virus.  (+info)

FR191512, a novel anti-influenza agent isolated from a fungus strain No.17415. II. Biological properties. (23/473)

FR191512, a novel polyphenolic compound, inhibited the infectivity of influenza A virus in Madin-Darby canine kidney (MDCK) cells in vitro. Furthermore, FR191512 showed good in vivo anti-influenza activity in a mouse model of intranasal infection with influenza A virus. The cytotoxic activity of FR191512 against MDCK cells was very weak.  (+info)

Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01. (24/473)

Orcinol hydroxylase (EC 1.14.13.6), which catalyzes the first reaction of orcinol catabolism in Pseudomonas putida 01, has been purified to homogeneity, and crystallized. Orcinol hydroxylase catalyzes the hydroxylation of orcinol with equimolar consumption of O2 and NADH (or NADPH) to 2, 3, 5-trihydroxytoluene, which is nonenzymically oxidized to a quinone. The visible absorption spectrum of the enzyme shows maxima at 373 and 454 nm and a shoulder at 480 nm. FAD can be dissociated from the protein. Reconstitution of enzymic activity was achieved with FAD, and to a limited extent by FMN. The enzyme has a molecular weight of 63,000 to 68,000 and contains 1 mol of FAD per mol of protein. K-m values for the three substrates orcinol, NADH, and O2 are 0.03, 0.13, and 0.07mM, RESPECTIVELY. The molecular activity of the crystalline enzyme is 1560 min minus 1. In the absence of orcinol, NADH is only slowly oxidized with formation of H2O2. Several analogs of orcinol also serve as substrates for hydroxylation, namely resorcinol, 4-methylresorcinol, and 4-bromoresorcinol. Other analogs, m-cresol, m-ethylphenol, 4-ethylresorcinol, and phloroglucinol, mimic orcinol as effectors, in that they (a) accelerate electron flow from NADH to the flavin and (b) decrease the apparent K-m for NADH but not to the same extent as the substrates that are hydroxylated. The latter compounds are not hydroxylated. Instead H2O2 accumulates as the only product of O2 reduction. The enzyme therefore behaves either as a hydroxylase or an oxidase. The ratio of hydroxylase to oxidase activities of the enzyme is decreased by an increase in the temperature of incubation; at 60 degrees the reaction with orcinol is almost 50% uncoupled from hydroxylation. The apparent K-m values for the effectors are in good agreement with the D-D values obtained for orcinol, resorcinol, and m-cresol. K-D values were obtained by measurement of the effector-induced perturbations of the visible absorption spectrum of the flavoprotein by difference absorption spectroscopy. The circular dichroism spectrum of orcinol hydroxylase is also altered in the presence of orcinol. The participation of the flavin in the over-all reaction is demonstrated by its rapid reduction under anaerobic conditions by NADH in the presence or orcinol, resorcinol, or m-cresol. Subsequent introduction of oxygen restores the oxidized form and yields H2O2 when m-cresol is the effector, but not when orcinol is the effector. Transfer of reducing equivalents from the reduced flavoprotein to free FAD may also occur. Reduction of orcinol hydroxylase by NADH in the absence of an effector is 10-4-fold slower than in the presence of an effector. The minimal structural requirements for effectors appear to be a 1,3-dihydroxy or 1-alkyl-3-hydorxybenzene, but only the former are substrates for hydroxylation.  (+info)