(1/9059) Analysis of two cosmid clones from chromosome 4 of Drosophila melanogaster reveals two new genes amid an unusual arrangement of repeated sequences.

Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing approximately 5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met-hepatocyte growth factor receptor. The other cosmid contains only the two short 5'-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the beta-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome.  (+info)

(2/9059) Nonmethylated transposable elements and methylated genes in a chordate genome.

The genome of the invertebrate chordate Ciona intestinalis was found to be a stable mosaic of methylated and nonmethylated domains. Multiple copies of an apparently active long terminal repeat retrotransposon and a long interspersed element are nonmethylated and a large fraction of abundant short interspersed elements are also methylation free. Genes, by contrast, are predominantly methylated. These data are incompatible with the genome defense model, which proposes that DNA methylation in animals is primarily targeted to endogenous transposable elements. Cytosine methylation in this urochordate may be preferentially directed to genes.  (+info)

(3/9059) Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability.

Small polydisperse circular DNA (spcDNA) is a heterogeneous population of extrachromosomal circular molecules present in a large variety of eukaryotic cells. Elevated amounts of total spcDNA are related to endogenous and induced genomic instability in rodent and human cells. We suggested spcDNA as a novel marker for genomic instability, and speculated that spcDNA might serve as a mutator. In this study, we examine the presence of telomeric sequences on spcDNA. We report for the first time the appearance of telomeric repeats in spcDNA molecules (tel-spcDNA) in rodent and human cells. Restriction enzyme analysis indicates that tel-spcDNA molecules harbor mostly, if not exclusively, telomeric repeats. In rodent cells, tel-spcDNA levels are higher in transformed than in normal cells and are enhanced by treatment with carcinogen. Tel-spcDNA is also detected in some human tumors and cell lines, but not in others. We suggest, that its levels in human cells may be primarily related to the amount of the chromosomal telomeric sequences. Tel-spcDNA may serve as a unique mutator, through specific mechanisms related to the telomeric repeats, which distinguish it from the total heterogeneous spcDNA population. It may affect telomere dynamics and genomic instability by clastogenic events, alterations of telomere size and sequestration of telomeric proteins.  (+info)

(4/9059) (CTG)n repeats markedly inhibit differentiation of the C2C12 myoblast cell line: implications for congenital myotonic dystrophy.

Although the mutation for myotonic dystrophy has been identified as a (CTG)n repeat expansion located in the 3'-untranslated region of a gene located on chromosome 19, the mechanism of disease pathogenesis is not understood. The objective of this study was to assess the effect of (CTG)n repeats on the differentiation of myoblasts in cell culture. We report here that C2C12 myoblast cell lines permanently transfected with plasmid expressing 500 bases long CTG repeat sequences, exhibited a drastic reduction in their ability to fuse and differentiate into myotubes. The percentage of cells fused into myotubes in C2 C12 cells (53.4+/-4.4%) was strikingly different from those in the two CTG repeat carrying clones (1.8+/-0.4% and 3.3+/-0. 7%). Control C2C12 cells permanently transfected with vector alone did not show such an effect. This finding may have important implications in understanding the pathogenesis of congenital myotonic dystrophy.  (+info)

(5/9059) Molecular characterization of the nitrite-reducing system of Staphylococcus carnosus.

Characterization of a nitrite reductase-negative Staphylococcus carnosus Tn917 mutant led to the identification of the nir operon, which encodes NirBD, the dissimilatory NADH-dependent nitrite reductase; SirA, the putative oxidase and chelatase, and SirB, the uroporphyrinogen III methylase, both of which are necessary for biosynthesis of the siroheme prosthetic group; and NirR, which revealed no convincing similarity to proteins with known functions. We suggest that NirR is essential for nir promoter activity. In the absence of NirR, a weak promoter upstream of sirA seems to drive transcription of sirA, nirB, nirD, and sirB in the stationary-growth phase. In primer extension experiments one predominant and several weaker transcription start sites were identified in the nir promoter region. Northern blot analyses indicated that anaerobiosis and nitrite are induction factors of the nir operon: cells grown aerobically with nitrite revealed small amounts of full-length transcript whereas cells grown anaerobically with or without nitrite showed large amounts of full-length transcript. Although a transcript is detectable, no nitrite reduction occurs in cells grown aerobically with nitrite, indicating an additional oxygen-controlled step at the level of translation, enzyme folding, assembly, or insertion of prosthetic groups. The nitrite-reducing activity expressed during anaerobiosis is switched off reversibly when the oxygen tension increases, most likely due to competition for electrons with the aerobic respiratory chain. Another gene, nirC, is located upstream of the nir operon. nirC encodes a putative integral membrane-spanning protein of unknown function. A nirC mutant showed no distinct phenotype.  (+info)

(6/9059) Roles of an Ets motif and a novel CACGAC direct repeat in transcription of the murine dihydrolipoamide dehydrogenase (Dld) gene.

The 5'-flanking region of the murine dihydrolipoamide dehydrogenase (Dld) gene was characterized for its promoter activity. DNase I footprinting analysis of the promoter region (-545 bp to +41 bp) revealed six major protein-binding domains (termed P1 to P6) that were protected by NIH3T3 fibroblast nuclear extracts. Transient transfection assays, using a series of nested deletions of the 2.5 kb 5'-flanking region ligated to the chloramphenicol acetyltransferase reporter gene, identified that the -42-bp to +41-bp region, which harbours the P1, P2, and P3 domains, had minimal transcriptional activity. When the 5'-flanking region was extended from -42 bp to -82 bp, there was an approx. 5-fold increase in promoter activity. To identify further the cis elements involved in transcription of the Dld gene (-82 bp to +41 bp), a series of mutations were introduced into this region and evaluated for functional effects using transient transfection and electrophoretic mobility shift assays. Mutation or deletion of the CACGAC direct repeat, located from -61 bp to -46 bp, resulted in minimal promoter activity. Mutation of the Ets motif, located from -37 bp to -32 bp, reduced the minimal promoter activity by approx. 50%, whereas the deletion of this motif almost abolished the promoter activity. These results indicate that: (i) the Ets motif is required for the minimal promoter activity and (ii) the CACGAC direct repeat enhances promoter activity. Database searches failed to identify the direct repeat with the CACGAC motif and hence the CACGAC sequence may represent a novel motif. The requirement of both the Ets motif and the direct repeat element for optimal promoter activity represents a unique combination for gene transcription.  (+info)

(7/9059) Nuclear factor I-mediated repression of the mouse mammary tumor virus promoter is abrogated by the coactivators p300/CBP and SRC-1.

To better understand the function of nuclear factor I (NFI) proteins in transcription, we have used transient transfection assays to assess transcriptional modulation by NFI proteins on the NFI-dependent mouse mammary tumor virus (MMTV) promoter. Expression of NFI-C or NFI-X, but not NFI-A or NFI-B proteins, represses glucocorticoid induction of the MMTV promoter in HeLa cells. Repression is DNA binding-independent as a deletion construct expressing the NH2-terminal 160 residues of NFI-C represses but does not bind DNA. Repression by NFI-C is cell type-dependent and occurs in HeLa and COS-1 cells but not 293 or JEG-3 cells. NFI-C does not repress progesterone induction of the MMTV promoter in HeLa cells, suggesting that progesterone induction of the promoter differs mechanistically from glucocorticoid induction. NFI-C-mediated repression is alleviated by overexpression of glucocorticoid receptor (GR), suggesting that NFI-C represses the MMTV promoter by preventing GR function. However, repression by NFI-C occurs with only a subset of glucocorticoid-responsive promoters, as the chimeric NFIGREbeta-gal promoter that is activated by GR is not repressed by NFI-C. Since the coactivator proteins p300/CBP, SRC-1A, and RAC3 had previously been shown to function at steroid hormone-responsive promoters, we asked whether they could influence NFI-C-mediated repression of MMTV expression. Expression of p300/CBP or SRC-1A alleviates repression by NFI-C, whereas RAC3 has no effect. This abrogation of NFI-C-mediated repression by p300/CBP and SRC-1A suggests that repression by NFI-C may occur by interference with coactivator function at the MMTV promoter.  (+info)

(8/9059) An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.  (+info)