Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans. (73/3749)

Angiotensin-converting enzyme (ACE) inhibition significantly decreases plasminogen activator inhibitor-1 (PAI-1) without altering tissue plasminogen activator (tPA) during activation of the renin-angiotensin-aldosterone system in humans. Because ACE inhibitors and angiotensin II type 1 (AT(1)) receptor antagonists differ in their effects on angiotensin II formation and bradykinin degradation, the present study compared the effect of equivalent hypotensive doses of an ACE inhibitor and AT(1) antagonist on fibrinolytic balance. Plasma PAI-1 antigen, tPA antigen, plasma renin activity, and aldosterone were measured in 25 normotensive subjects (19 white, 6 black; 14 men, 11 women; mean age 38.5+/-1.8 years; mean body mass index 25.3+/-0.7 kg/m(2)) during low salt intake alone (10 mmol Na/d), low salt intake + quinapril (40 mg PO bid), and low salt intake + losartan (50 mg PO bid). Compared with low salt alone (systolic blood pressure [BP] 118.8+/-2.2 mm Hg), both quinapril (106.3+/-2.5 mm Hg, P<0.001) and losartan (105.4+/-2. 8 mm Hg, P<0.001) reduced BP. No statistical difference was found between quinapril and losartan in their BP lowering effect. Losartan (P=0.009), but not quinapril, lowered heart rate. Both drugs significantly lowered aldosterone (P<0.001 versus low salt alone for each); however, this effect was significantly greater for quinapril than for losartan (P<0.001 for quinapril versus losartan). Treatment with quinapril, but not with losartan, was associated with a decrease in both PAI-1 antigen (P=0.03) and activity (P=0.018). PAI-1 activity was lower during treatment with quinapril than with losartan (P=0.015). The average PAI-1 antigen concentration was 13. 0+/-2.0 ng/mL during low salt alone, 10.5+/-1.6 ng/mL during quinapril treatment, and 12.3+/-2.1 ng/mL during losartan treatment. In contrast, plasma tPA antigen concentrations were reduced during treatment with losartan (P=0.03) but not with quinapril. This study provides the first evidence that ACE inhibitors and AT(1) antagonists differ in their effects on fibrinolytic balance under conditions of activation of the renin-angiotensin-aldosterone system. Further studies are needed to address the mechanism for the contrasting effects of these 2 classes of drugs on fibrinolysis and to define the clinical significance of these differences.  (+info)

Renin activity and blood pressure in response to chronic episodic hypoxia. (74/3749)

Previous studies in several strains of rats have demonstrated that 35 days of recurrent episodic hypoxia (EH) (7 hours per day), with a fractional concentration of inspired oxygen that produces desaturation equivalent to the recurrent hypoxemia of sleep apnea, results in an 8 to 13 mm Hg persistent increase in diurnal systemic blood pressure (BP). Carotid chemoreceptors and the sympathetic nervous system have been shown to be necessary for development of this BP increase. Both renal artery denervation and adrenal demedullation block the BP response to chronic EH. The present study was undertaken to define further the role of the kidneys and the renin-angiotensin system in this BP increase. Separate groups of male Sprague-Dawley rats had either (1) bilateral renal artery denervation with EH, (2) sham surgery with EH, (3) sham surgery with sham EH (compressed air), (4) EH with losartan, (5) unhandled with losartan, or (6) unhandled. The experimental period lasted 35 days. Both renal-artery denervated and losartan-treated animals showed no BP change or a lowering of BP in response to EH, whereas the sham-operated EH animals showed a progressive, sustained increase in resting room air BP. BP remained at basal levels or fell in unhandled and unhandled losartan-treated animals. Plasma renin activity was elevated 4-fold versus basal levels in EH animals with renal nerves intact but remained at baseline levels in denervated animals. At the end of the experiment, renal tissue catecholamines confirmed renal denervation in those animals. In conclusion, EH causes a progressive increase in BP, mediated in part through renal sympathetic nerve activity that acts to increase renin-angiotensin system activity through angiotensin II type 1 receptors.  (+info)

Levels of mineralocorticoids in whites and blacks. (75/3749)

Blacks appear, on average, to retain more Na than whites. A higher production rate of mineralocorticoids could explain the greater Na retention in blacks. Although production of aldosterone has been shown to be lower in blacks, the level of another mineralocorticoid may be increased. Plasma levels of deoxycorticosterone and cortisol were measured in young whites (n=23; age=16.4+/-3.1[SD] years) and young blacks (n=25; age=13.8+/-1.3 years). Blacks had lower plasma levels of renin activity and aldosterone and lower urinary aldosterone excretion rates; thus, they appeared to be representative of blacks that retain additional Na. Plasma deoxycorticosterone levels were lower in blacks than in whites both at baseline (247+/-161 versus 381+/-270 pmol/L, P=0.048) and after stimulation with adrenocorticotropic hormone (822+/-294 versus 1127+/-628 pmol/L at 30 minutes, P=0.047; 925+/-366 versus 1440+/-834 pmol/L at 60 minutes, P=0.013). Cortisol levels were also lower in blacks at baseline (P=0.014) but were not significantly different from levels in whites after stimulation with adrenocorticotropic hormone. In a larger cohort of 407 whites (age=12.0+/-2.9 years) and 247 blacks (age=12.9+/-3.1 years), 18-hydroxycortisol excretion rates were also lower in blacks (P=0. 021). In conclusion, increased Na retention in blacks does not appear to be secondary to increased production of either aldosterone, deoxycorticosterone, cortisol, or 18-hydroxycortisol. A primary renal mechanism may mediate the increase in Na reabsorption in blacks.  (+info)

Plasma renin and prorenin and renin gene variation in patients with insulin-dependent diabetes mellitus and nephropathy. (76/3749)

BACKGROUND: The most striking abnormality in the renin angiotensin system in diabetic nephropathy (DN) is increased plasma prorenin. Renin is thought to be low or normal in DN. In spite of altered (pro)renin regulation the renin gene has not been studied for contribution to the development of DN. METHODS: We studied plasma renin, prorenin, and four polymorphic markers of the renin gene in 199 patients with IDDM and DN, and in 192 normoalbuminuric IDDM controls matched for age, sex, and duration of diabetes. Plasma renin and total renin were measured by immunoradiometric assays. Genotyping was PCR-based. RESULTS: Plasma renin was increased in patients with nephropathy (median (range), 26.3 (5.2-243.3) vs 18.3 (4.2-373.5) microU/ml in the normoalbuminuric group, P<0.0001). Prorenin levels were elevated out of proportion to renin levels in nephropathic patients (789 (88-5481) vs 302 (36-2226) microU/ml, P<0.0001). Proliferative retinopathy had an additive effect on plasma prorenin, but not on renin. DN was associated with a BglI RFLP in the first intron of the renin gene (bb-genotype: n=106 vs 82 in DN and normoalbuminuric patients respectively, P=0.037), but not with three other polymorphisms in the renin gene. A trend for association of higher prorenin levels with the DN-associated allele of this renin polymorphism was observed in a subgroup of patients with DN (bb vs Bb+BB, P=0.07). CONCLUSIONS: The results indicate that in DN there is an increase in both renin and prorenin levels. A renin gene polymorphism may contribute weakly to DN. Although speculative, one of the renin gene alleles could lead to increased renin gene expression, leading to higher renin and prorenin levels. These may play a role in the pathogenesis of DN.  (+info)

Effect of candesartan cilexetil (TCV-116) in rats with chronic renal failure. (77/3749)

BACKGROUND: Inhibition of the renin-angiotensin system by both angiotensin II type 1 receptor antagonists (AT1As) and angiotensin I-converting enzyme inhibitors (ACEIs) shows renoprotective effects in rats with chronic renal failure when treatment is started in the early phase of renal injury. In this study, we examined the renal protective effects of candesartan cilexetil (TCV-116), an AT1A, and enalapril, an ACEI, in the progressive phase of renal injury in 5/6 nephrectomized rats. METHODS: Candesartan cilexetil (1 mg/kg/day) and enalapril (10 mg/kg/day) were orally administered once a day for 4 weeks (the short-term experiment) or 16 weeks (the long-term experiment) to 5/6 nephrectomized rats beginning 15 weeks after the nephrectomy, that is, after they had already showed marked proteinuria. RESULTS: In vehicle-treated rats, proteinuria, glomerulosclerosis, and interstitial fibrosis developed. Moreover, enhanced expression of transforming growth factor-beta1 (TGF-beta1) in the injured glomeruli was observed. These adverse changes progressed with time, and in the short-term experiment, both drugs inhibited them. In the long-term experiment, the progressive proteinuria and the elevation of blood pressure were similarly attenuated by both drugs. However, candesartan cilexetil significantly inhibited the progression of glomerulosclerosis, the expression of TGF-beta1, and interstitial fibrosis, whereas enalapril did not. CONCLUSION: These results indicate that candesartan cilexetil shows potent and long-term preventive effects against the progression of previously developed renal injury.  (+info)

Apparent activities of 21-hydroxylase, 17alpha-hydroxylase and 17,20-lyase are impaired in adrenal incidentalomas. (78/3749)

OBJECTIVE: An increased response of 17-hydroxyprogesterone to ACTH stimulation has been observed in adrenal incidentaloma and linked to an impairment of either 21-hydroxylase or of 11beta-hydroxylase activity. To analyse this question further, we investigated the steroidogenic pathways in a series of 17 adrenal incidentalomas. DESIGN AND PATIENTS: 17 patients (7 women, 10 men; mean age, 62 +/- 12 years) with non-histologically analyzed adrenal incidentalomas were prospectively evaluated. METHODS: The following variables were investigated: 24-h urinary methanephrines and free cortisol excretion; plasma levels of ACTH and dehydroepiandrosterone; overnight dexamethasone suppression test; 1-24 ACTH stimulation test with measurement of: cortisol, 11-deoxycortisol, 17-hydroxyprogesterone, aldosterone, 11-deoxycorticosterone, progesterone, 17-hydroxypregnenolone, Delta4-androstenedione, dehydroepiandrosterone and 21-deoxycortisol. RESULTS: Discordant features of subclinical hypercorticism were noted in one case. No patient had dehydroepiandrosterone sulfate levels in the normal range for his or her age. Peak 17-hydroxyprogesterone and peak 21-deoxycortisol disclosed impairment of 21-hydroxylase in 11 and 10 cases respectively. An increased 11-deoxycortisol/cortisol ratio identified reduced activity of 11beta-hydroxylase in 11 patients. Eight patients displayed features of mild 17,20-lyase impairment, which was related to 21-hydroxylase dysfunction. Whereas only 2 patients showed no enzyme modification, 9 displayed alterations of at least two pathways. CONCLUSION: In our hands, a combination of enzyme dysfunction was frequently observed. Shared biochemical mechanisms could explain combined 17,20-lyase and 21-hydroxylase alterations, whereas coexistence of 21-hydroxylase (particularly when based on peak 21-deoxycortisol) and 11beta-hydroxylase is more puzzling.  (+info)

Aldosterone-producing adenoma without hypertension: a report of two cases. (79/3749)

Normotensive primary hyperaldosteronism is exceedingly rare. We report two new cases of this syndrome in two middle-aged women, one of Asian origin. The presenting signs were tetany in one case and an adrenal mass in the other. Neither patient had hypertension, despite repeated measurements with a manual armlet. A typical biological profile of primary hyperaldosteronism was demonstrated in both patients, including hypokalemia with inappropriate kaliuresis, elevated resting plasma aldosterone, and undetectable plasma renin activity. The circadian rhythm of blood pressure was studied by ambulatory monitoring pre- and post-operatively. It confirmed the lack of hypertension, but the circadian rhythm of blood pressure was lost before surgery in one patient. Surgical removal of the histologically typical aldosterone-producing adenomas normalized the kalemia. The main finding in these two patients was spontaneously low blood pressure in the post-operative period. This suggests that excess aldosterone induced relative hypertension in these patients whose blood pressure was spontaneously very low. Genetic screening for dexamethasone-sensitive hyperaldosteronism was negative in both patients.  (+info)

Vascular remodeling in hypertensive transgenic mice. (80/3749)

We physiologically and histopathologically analyzed vascular damage due to hypertension and vascular remodeling in hypertensive transgenic mice (Tsukuba hypertensive mice; THM). Pubertal (6-week-old) THM already had hypertension similar to blood pressure in adult THM due to an enhanced renin angiotensin system (RAS). They progressively developed remarkable vascular hypertrophy composed of dedifferentiation of vascular smooth muscle cells (VSMCs) and extracellular matrix accumulation in the thoracic aorta, and VSMC hyperplasia was predominant in the abdominal aorta. THM are therefore a useful animal model for studying vascular remodeling mediated by enhanced RAS.  (+info)