In vivo enzymatic assay reveals catalytic activity of the human renin precursor in tissues. (33/3749)

The aspartyl protease renin is secreted into the circulation of mammals in 2 forms: the proteolytically processed active form of the enzyme and the precursor form, prorenin. Prorenin has no detectable enzymatic activity in the circulation, but it is the exclusive form of the enzyme produced by several tissues that also produce the other components of the renin enzymatic cascade (renin-angiotensin system). To test whether prorenin might be enzymatically active in these tissues, transgenic mice expressing the human renin substrate (angiotensinogen) exclusively in the pituitary gland were mated to mice expressing either active human renin or prorenin in the same tissue. Measurement of in vivo product formation in pituitary glands of double-transgenic mice revealed that human prorenin was enzymatically active, and Western blot analysis demonstrated that this prorenin was in the precursor form with its prosegment attached. This in vivo enzymatic assay demonstrates for the first time that human prorenin can be activated within tissues by nonproteolytic means, where it could contribute to the activity of a localized renin-angiotensin system.  (+info)

Increased sympathetic nerve activity in renovascular hypertension. (34/3749)

BACKGROUND: Increased sympathetic nerve activity may contribute to the progression of renovascular hypertension. Because previous results have been inconclusive, we investigated whether renovascular hypertensives show increased total and regional sympathetic nerve activity. METHODS AND RESULTS: Sixty-five patients underwent renal angiography and measurements of plasma renin activity and angiotensin II in conjunction with estimation of sympathetic nerve activity by means of radiotracer dilution and intraneural recordings of muscle sympathetic nerve activity (MSNA). Age-matched healthy subjects (n=15) were examined for comparison. Total body norepinephrine (NE) spillover, an index of overall sympathetic nerve activity, was increased by 100% and MSNA by 60% in the hypertensive patients compared with healthy subjects (P<0.01 for both). A subgroup of 24 patients with well-defined renovascular hypertension (cured or improved hypertension after renal angioplasty) showed similar increases in total body NE spillover compared with the group at large. Patients with arterial plasma renin activity and angiotensin II levels above median had higher values for total body NE spillover than patients below median (P<0.01). CONCLUSIONS: This study unequivocally demonstrates elevated sympathetic nerve activity in patients with renovascular hypertension. The adrenergic overactivity may contribute to the blood pressure elevation and perhaps also to the high cardiovascular mortality in renovascular hypertension.  (+info)

Adenosine causes the release of active renin and angiotensin II in the coronary circulation of patients with essential hypertension. (35/3749)

OBJECTIVES: The aim of the study was to evaluate whether adenosine infusion can induce production of active renin and angiotensin II in human coronary circulation. BACKGROUND: Adenosine can activate angiotensin production in the forearm vessels of essential hypertensive patients. METHODS: In six normotensive subjects and 12 essential hypertensive patients adenosine was infused into the left anterior descending coronary artery (1, 10, 100 and 1,000 microg/min x 5 min each) while active renin (radioimmunometric assay) and angiotensin II (radioimmunoassay after high performance liquid chromatography purification) were measured in venous (great cardiac vein) and coronary arterial blood samples. In five out of 12 hypertensive patients adenosine infusion and plasma samples were repeated during intracoronary angiotensin-converting enzyme inhibitor benazeprilat (25 microg/min) administration. Finally, in adjunctive hypertensive patients, the same procedure was applied during intracoronary sodium nitroprusside (n = 4) or acetylcholine (n = 4). RESULTS: In hypertensive patients, but not in control subjects, despite a similar increment in coronary blood flow, a significant (p < 0.05) transient increase of venous active renin (from 10.7 +/- 1.4 [95% confidence interval 9.4 to 11.8] to a maximum of 13.8 +/- 2.1 [12.2 to 15.5] with a consequent drop to 10.9 +/- 1.8 [9.7 to 12.1] pg/ml), and angiotensin II (from 14.6 +/- 2.0 [12.7 to 16.5] to a maximum of 20.4 +/- 2.7 [18.7 to 22.2] with a consequent drop to 16.3 +/- 1.8 [13.9 to 18.7] pg/ml) was observed under adenosine infusion, whereas arterial values did not change. Calculated venous-arterial active renin and angiotensin II release showed a strong correlation (r = 0.78 and r = 0.71, respectively; p < 0.001) with circulating active renin. This adenosine-induced venous angiotensin II increase was significantly blunted by benazeprilat. Finally, both sodium nitroprusside and acetylcholine did not affect arterial and venous values of active renin and angiotensin II. CONCLUSIONS: These data indicate that exogenous adenosine stimulates the release of active renin and angiotensin II in the coronary arteries of essential hypertensive patients, and suggest that this phenomenon is probably due to renin release from tissue stores of renally derived renin.  (+info)

Ventricular adrenomedullin levels correlate with the extent of cardiac hypertrophy in rats. (36/3749)

We investigated the pathophysiological significance of adrenomedullin (AM) in the development of left ventricular hypertrophy (LVH). LVH was produced by aortic banding (AB) in rats. The left ventricular weight/body weight (LV/BW) ratio, ventricular AM peptide and mRNA levels, and hemodynamics were measured at 1, 3, 7, and 21 days after the operation. Both LV/BW ratio and ventricular AM levels showed a significant increase from 1 day after the operation in the AB rats versus the sham-operated rats. Both increased in a time-dependent manner. The ventricular AM levels correlated with the LV/BW ratio (r=0.76, P<0.01). The AM mRNA levels were highly expressed at 1 day after the operation in the AB rats but showed no difference from 3 to 21 days after the operation between the AB and sham groups. The plasma AM levels showed a peak at 1 day after the operation in both groups. Then, we treated AB rats with an angiotensin-converting enzyme inhibitor (quinapril) in 2 doses (1 and 10 mg. kg-1. d-1) for 21 days. The quinapril treatment attenuated similarly both the LV/BW ratio and the ventricular AM levels. We also assessed the effects of AM and hydralazine administration for 7 days on the LV/BW ratio and hemodynamics of AB rats. Both AM and hydralazine administration reduced the blood pressure by approximately 10% compared with the nontreated AB rats, but a reduction of the LV/BW ratio was observed only in the AM-treated group (P<0.05). These results suggest that ventricular AM levels are elevated by chronic pressure overload in a time-dependent manner concomitant with the extent of LVH and that AM may play a pathophysiological role in the development of LVH in chronic pressure overload.  (+info)

Estradiol with or without progesterone and ambulatory blood pressure in postmenopausal women. (37/3749)

The purpose of this study was to determine whether transdermal estradiol and intravaginal progesterone given in doses to mimic the premenopausal state would lower blood pressure (BP) in postmenopausal women. Fifteen healthy postmenopausal women were studied in each of 3 conditions: on placebo, after 8 weeks of transdermal estradiol 0.2 mg twice per week, and again 2 weeks after addition of intravaginal progesterone 300 mg/d. Women were studied at each point after 2 days of 100 mmol/d sodium intake. Twenty-four-hour ambulatory BP monitoring was performed, and blood was assayed for estradiol, progesterone, and hormones of the renin-angiotensin-aldosterone system (RAAS). ANOVA with pairwise comparisons was used for analysis. Urinary sodium excretion was similar at each time point. Levels of estrogen and progesterone similar to those in premenopausal women were achieved. On estradiol, nocturnal systolic BP (110+/-3 mm Hg), diastolic BP (63+/-2 mm Hg), and mean BP (77+/-2 mm Hg) fell significantly (P<0.02) compared with placebo systolic BP (116+/-2 mm Hg), diastolic BP (68+/-2 mm Hg), and mean BP (82+/-2 mm Hg). Daytime BP followed the same trend but was significantly lower only for mean BP. There was no activation of the RAAS. The addition of progesterone resulted in no further fall in BP but a significant activation of the RAAS. Thus, contrary to what is often assumed, administration of estradiol with or without progesterone not only did not raise BP but rather substantially lowered BP. This BP-lowering effect may be responsible for the lower incidence of hypertension in premenopausal than in postmenopausal women.  (+info)

Effects of age and gender on autonomic control of blood pressure dynamics. (38/3749)

Both age and gender influence cardiovascular autonomic control, which in turn may influence the ability to withstand adverse cardiac events and respond to orthostatic stress. The purpose of this study was (1) to quantify age- and gender- related alterations in autonomic control of blood pressure (BP) and (2) to examine the impact of these autonomic alterations on BP response to orthostatic stress. We measured continuous BP and R-R intervals and vasoactive peptide levels in the supine and 60 degrees head-up tilt positions during paced respiration (0.25 Hz) in 89 carefully screened healthy subjects (41 men, 48 women, aged 20 to 83 years). Data were analyzed by gender (age adjusted) and by age group (gender adjusted). During tilt, women had greater decreases in systolic BP than men (-10.2+/-2 versus -1.2+/-3 mm Hg; P=0.02) and smaller increases in low-frequency (sympathetically mediated) BP power (P=0.02). Upright plasma norepinephrine was lower in women (P=0.02). Women had greater supine high-frequency R-R interval power than men (P=0.0001). In elderly subjects, the tilt-induced increase in low-frequency BP power was also diminished (P=0.01), despite higher supine (P=0.02) and similar upright norepinephrine levels compared with younger subjects. Thus, healthy women have less sympathetic influence on BP and greater parasympathetic influence on R-R interval than men. Elderly subjects also have reduced sympathetic influence on BP, but this appears to be more consistent with a reduction in vasomotor sympathetic responsiveness.  (+info)

Brain mineralocorticoid receptor control of blood pressure and kidney function in normotensive rats. (39/3749)

Brain mineralocorticoid receptors appear to contribute to mineralocorticoid hypertension and may be involved in blood pressure control in normotensive rats. We examined the effect of blockade of central mineralocorticoid receptors with the use of a selective antagonist (RU28318) on cardiovascular and renal function in conscious normotensive rats. The contribution of renal innervation was evaluated in rats with bilaterally denervated kidneys. Young adult, male Wistar rats were trained for systolic blood pressure measurement by a tail sphygmographic method and accustomed to metabolic cages for collection of urine. One week before experimentation, an intracerebroventricular cannula was implanted. Systolic blood pressure was diminished 30 minutes after an intracerebroventricular dose of 10 ng of RU28318. The effect was maximal at 8 hours and was still present after 24 hours. Blood pressure returned to the basal level by 48 hours. During the period 0 to 8 hours after intracerebroventricular injection, rats treated with the antagonist showed an increase in diuresis and urinary electrolyte excretion. No significant effect on plasma renin activity, measured 8 and 30 hours after administration of RU28318, was observed. In denervated rats, the decrease in systolic blood pressure after administration of RU28318 was reduced. The difference was statistically significant compared with controls at 2 hours but not at 8 hours, and blood pressure returned to the basal value by 24 hours. The increases in diuresis and urinary electrolyte excretion induced by RU28318 were abolished in denervated rats. These results show that brain mineralocorticoid receptors are involved in blood pressure regulation and kidney function homeostasis in conscious normotensive rats. The renal nerves appear to participate in the brain mineralocorticoid receptor control of blood pressure.  (+info)

Type 2 bradykinin-receptor antagonism does not modify kinin or angiotensin peptide levels. (40/3749)

Type 2 bradykinin (B2)-receptor antagonists have been used to define the role of endogenous kinin peptides. However, interpretation of the effects of B2-receptor antagonists has been limited by lack of information concerning the effects of these antagonists on endogenous kinin and angiotensin peptide levels. If kinin levels were subject to short-loop-feedback regulation mediated through B2 receptors, then a reactive increase in kinin levels might blunt the effects of B2-receptor antagonism and stimulate type 1 bradykinin receptors. Moreover, kinins have been implicated in the control of renin secretion. We investigated whether endogenous kinin levels are subject to short-loop-feedback regulation mediated by the B2 receptor and whether endogenous kinins acting through the B2 receptor influence plasma renin levels and circulating and tissue angiotensin peptide levels. The B2-receptor antagonist icatibant (1 mg/kg) was administered to rats by intraperitoneal injection, and circulating and tissue levels of angiotensin and kinin peptides were measured after 4 hours. Icatibant produced 75% occupancy of B2 receptors in the inner stripe of the renal medulla. Icatibant did not influence plasma levels of renin, angiotensinogen, angiotensin-converting enzyme, neutral endopeptidase, or circulating or tissue levels of angiotensin and bradykinin peptides. This study demonstrated that kinin levels are not subject to short-loop-feedback regulation mediated through B2 receptors and that endogenous kinin levels acting through the B2 receptor do not modulate the renin-angiotensin system.  (+info)