Deoiledjatropha seed cake is a useful nutrient for pullulan production. (9/38)

 (+info)

Wind power electricity: the bigger the turbine, the greener the electricity? (10/38)

 (+info)

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production. (11/38)

The design of molecular electrocatalysts for H(2) oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently, nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H(2) oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center, and nitrogen atoms of the ligand rings act as proton relays. The catalytic step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The electrochemical rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the pendant amines become more flexible to facilitate the contraction of this distance with a lower energy penalty. This approach identifies the favored mechanisms under various experimental conditions and provides insight into the impact of substituents on the nitrogen and phosphorous atoms.  (+info)

Environmental effects on vertebrate species richness: testing the energy, environmental stability and habitat heterogeneity hypotheses. (12/38)

 (+info)

Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics. (13/38)

 (+info)

An approach to enhance the conservation-compatibility of solar energy development. (14/38)

 (+info)

Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios. (15/38)

 (+info)

Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity. (16/38)

 (+info)