Long-distance RNA-RNA interactions and conserved sequence elements affect potato virus X plus-strand RNA accumulation. (73/7095)

Conserved octanucleotide sequences located upstream of two major potato virus X (PVX) subgenomic RNAs (sgRNAs), as well as elements in the 5' end of the genome, affect accumulation of sgRNA. To determine if complementarity between these sequences is important for PVX RNA accumulation, we analyzed the effects of mutations within these elements and compensatory mutations in a tobacco protoplast system and in plants. Mutations in the 5' nontranslated region (NTR mutants) that reduced complementarity resulted in lower genomic RNA (gRNA) and sgRNA levels, whereas mutations to the octanucleotide elements affected only the corresponding sgRNA levels. However, for both the NTR and octanucleotide mutants, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Mutants containing changes in the NTR and compensatory changes in one of the octanucleotide elements restored levels of gRNA and the other sgRNA species with an unaltered octanucleotide element to those of wild-type. Although compensatory changes significantly increased levels of the sgRNA species with the modified octanucleotide element, levels were not restored to those of wild-type. Our data indicate that long distance RNA-RNA interactions and the sequences of the interacting elements are required for PVX plus-strand RNA accumulation.  (+info)

Combinatorial control of a neuron-specific exon. (74/7095)

The mouse c-src gene contains a short neuron-specific exon, N1. N1 exon splicing is partly controlled by an intronic splicing enhancer sequence that activates splicing of a heterologous reporter exon in both neural and nonneural cells. Here we attempt to dissect all of the regulatory elements controlling the N1 exon and examine how these multiple elements work in combination. We show that the 3' splice site sequence upstream of exon N1 represses the activation of splicing by the downstream intronic enhancer. This repression is stronger in nonneural cells and these two regulatory sequences combine to make a reporter exon highly cell-type specific. Substitution of the 3' splice site of this test exon with sites from other exons indicates that activation by the enhancer is very dependent on the nature of the upstream 3' splice site. In addition, we identify a previously uncharacterized purine-rich sequence within exon N1 that cooperates with the downstream intronic enhancer to increase exon inclusion. Finally, different regulatory elements were tested in multiple cell lines of both neuronal and nonneuronal origin. The individual splicing regulatory sequences from the src gene vary widely in their activity between different cell lines. These results demonstrate how a simple cassette exon is controlled by a variety of regulatory elements that only in combination will produce the correct tissue specificity of splicing.  (+info)

Involvement of RFX1 protein in the regulation of the human proliferating cell nuclear antigen promoter. (75/7095)

The proliferating cell nuclear antigen (PCNA) is an essential eukaryotic DNA replication factor that is transcriptionally regulated by the adenovirus oncoprotein E1A 243R. Inducibility of the human PCNA promoter by E1A 243R is conferred by the cis-acting PCNA E1A-responsive element (PERE), which associates with the ATF-1, cAMP response element-binding protein (CREB), and RFX1 transcription factors and is modulated by cellular proteins such as the coactivator CREB-binding protein (CBP) and tumor suppressor p107 (Labrie, C., Lee, B. H., and Mathews, M. B. (1995) Nucleic Acids Res. 23, 3732-3741; Lee, B. H., and Mathews, M. B. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4481-4486; Lee, B. H., Liu, M., and Mathews, M. B. (1998) J. Virol. 72, 1138-1145). RFX1 also forms a complex with sequences in the PCNA promoter of mouse and rat that share homology with the RFX1 consensus site. To explore the role of RFX1 in regulating the PCNA promoter, we examined the effects of mutations in the human PERE on RFX1 binding and gene expression. Mutations within the RFX1 consensus binding site reduced RFX1 binding, whereas mutations upstream of the site, or on its border, increased RFX1 binding. These mutations also affected the transcriptional activity of PCNA-chloramphenicol acetyltransferase reporter constructs in transient expression assays. The relative transcriptional activity of mutant PCNA promoters, both in the presence and absence of E1A 243R, was inversely related to their ability to complex with RFX1. These findings suggest that the binding of RFX1 is influenced by sequences outside its consensus binding site and that this transcription factor plays an inhibitory role in the regulation of PCNA gene expression.  (+info)

An upstream regulator of the glycoprotein hormone alpha-subunit gene mediates pituitary cell type activation and repression by different mechanisms. (76/7095)

Targeting of alpha-subunit gene expression within the pituitary is influenced by an upstream regulatory region that directs high level expression to thyrotropes and gonadotropes of transgenic mice. The same region also enhanced the activity of the proximal promoter in transfections of pituitary-derived alpha-TSH and alpha-T3 cells. We have localized the activating sequences to a 125-bp region that contains consensus sites for factors that also play a role in proximal promoter activity. Proteins present in alpha-TSH and alpha-T3 cells as well as those from GH3 somatotrope-derived cells interact with this region. The upstream area inhibited proximal alpha-promoter activity by 80% when transfected into GH3 cells. Repression in GH3 cells was mediated through a different mechanism than enhancement, as supported by the following evidence. Reversing the orientation of the area resulted in a loss of proximal promoter activation in alpha-TSH and alpha-T3 cells but did not relieve repression in GH3 cells. Mutation of proximal sites shown to be important for activation had no effect on repression. Finally, bidirectional deletional analysis revealed that multiple elements are involved in activation and repression and, together with the DNA binding studies, suggests that these processes may be mediated through closely juxtaposed or even overlapping elements, thus perhaps defining a new class of bifunctional gene regulatory sequence.  (+info)

Estrogen modulation of apolipoprotein(a) expression. Identification of a regulatory element. (77/7095)

Elevated plasma levels of the lipoprotein particle Lp(a) are a major risk factor for cardiovascular disease. Lp(a) plasma levels are determined by the level of expression of its characteristic protein component, apo(a). Apo(a) expression is modulated by several hormones, of which estrogens are the best known. The chromosomal region responsible for estrogen response was identified within an apo(a) enhancer located at approximately 26 kilobases from the apo(a) promoter. Although the estrogen-responsive unit contains a potential estrogen response element, binding of estrogen receptor-alpha to DNA was not necessary. The receptor, activated by bound estradiol, interacts through its transactivation domains with a transcription factor necessary for the function of the enhancer, preventing its binding to DNA.  (+info)

Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus. (78/7095)

Arrestins are a family of proteins that modulate G protein-coupled receptor responses with distinct arrestin genes expressed in rods and cones. To understand the regulatory mechanisms controlling rod-specific expression, the abundant Xenopus rod arrestin cDNA and a partial genomic clone, containing the immediate upstream region and amino terminus of the polypeptide, have been characterized. The deduced polypeptide has approximately 69% identity to other vertebrate rod arrestins. Southern blot analysis and polymerase chain reaction of intronic sequences demonstrated multiple alleles for rod arrestin. DNase I footprinting with retinal proteins revealed four major DNA binding sites in the proximal promoter, coinciding with consensus sequences reported in mammalian promoters. Purified bovine Crx homeodomain and mouse Nrl proteins protected a number of these sites. A dual approach of transient embryo transfections and transgenesis was used to locate transcriptional control sequences essential for rod-specific expression in Xenopus. Constructs containing -1287/+113 of 5' upstream sequence with or without intron 1 directed high level expression, specifically in rods. A construct containing only -287/+113 directed expression of green fluorescent protein solely in rod cells. These results suggest that the Crx and Nrl binding sites in the proximal promoter are the primary cis-acting sequences regulating arrestin gene expression in rods.  (+info)

B cell-specific activator protein prevents two activator factors from binding to the immunoglobulin J chain promoter until the antigen-driven stages of B cell development. (79/7095)

The immunoglobulin J chain gene is inducibly transcribed in mature B cells upon antigen recognition and a signal from interleukin-2 (IL-2). B cell-specific activator protein (BSAP), a transcription factor that silences J chain transcription, has been identified as a nuclear target of the IL-2 signal. The levels of BSAP progressively decrease in response to IL-2 and this change correlates with the differentiation of B cells into antibody secreting plasma cells. Here we report the binding of the upstream stimulatory factor (USF) to an E-box motif immediately upstream from the BSAP site on the J chain promoter. Mutations in the USF binding motif significantly decrease J chain promoter activity in J chain expressing B cell lines. We also show that a functional relationship exists between USF and a second J chain positive-regulating factor, B-MEF2, using co-immunoprecipitation assays and transfections. Finally, we provide evidence that the binding of BSAP prevents USF and B-MEF2 from interacting with the J chain promoter during the antigen-independent stages of B cell development. It is not until the levels of BSAP decrease during the antigen-driven stages of B cell development that both USF and B-MEF2 are able to bind to their respective promoter elements and activate J chain transcription.  (+info)

Sex-specific transcripts of the Dstpk61 serine/threonine kinase gene in Drosophila melanogaster. (80/7095)

We describe the characterization of several transcripts of the Drosophila serine/threonine protein kinase 61 (Dstpk61) gene. Dstpk61 produces at least four transcripts, including a 3.0-kb testis-specific transcript, a 4.5-kb female-specific carcass transcript, a 3.5-kb ovary-specific transcript, and a 4.7-kb non-sex-specific transcript. Two cDNAs, a 4.5-kb cDNA (cDNAB) and a 3.0-kb cDNA (cDNAA), likely to correspond to either the non-specific or the female-specific carcass and the testis-specific transcript, respectively, were fully sequenced and found to encode a novel OPA-repeat-containing serine/threonine-specific protein kinase. cDNAA and cDNAB both contain the entire ORF that encodes this predicted protein, but differ in the untranslated regions. The cDNAs contain translational control elements which are found in transcripts under male germline-specific translational control, and doublesex-like 13-nucleotide repeat elements, which are required for transformer/transformer-2-mediated splicing of the female doublesex transcript. The complex tissue and sex-specific transcripts, differing in the untranslated regions which are likely to be crucial in translational control, suggest that this kinase may have both general and sex-specific functions. The protein is homologous to human 3-phosphoinositide dependent protein kinase, which is involved in transduction of insulin signalling.  (+info)