Voluntary and reflex control of human back muscles during induced pain. (9/474)

1. Back pain is known to change motor patterns of the trunk. The purpose of this study was to examine the motor output of the erector spinae (ES) muscles during pain in the lumbar region. First, their voluntary activation was assessed during flexion and re-extension of the trunk. Second, effects of cutaneous and muscle pain on the ES stretch reflex were measured, since increased stretch reflex gain has been suggested to underlie increased muscle tone in painful muscles. 2. The trunk movement and electromyographical (EMG) signals from the right and left ES during pain were compared with values before pain. Controlled muscle pain was induced by infusion of 5 % saline into the right lumbar ES. Cutaneous pain was elicited by mechanical or electrical stimulation of the dorsal lumbar skin. The stretch reflex was evoked by rapidly indenting the right lumbar ES with a servo-motor prodder. 3. The results from the voluntary task show that muscle pain decreased the modulation depth of ES EMG activity. This pattern was associated with a decreased range and velocity of motion of the painful body segment, which would normally serve to avoid further injury. Interestingly, when subjects overcame this guarding tendency and made exactly the same movements during pain as before pain, the EMG modulation depth was still reduced. The results seem to reconcile the controversy of previous studies, in which both hyper- and hypoactivity of back muscles in pain have been reported. 4. In the tapped muscle, the EMG response consisted of two peaks (latency 19.3 +/- 2.1 and 44.6 +/- 2.5 ms, respectively) followed by a trough. On the contralateral side the first response was a trough (26.2 +/- 3.2 ms) while the second (46.4 +/- 4.3 ms) was a peak, similar to the second peak on the tapped side. Cutaneous pain had no effect on the short-latency response but significantly increased the second response on the tapped side. Surprisingly, deep muscle pain had no effect on the stretch reflex. A short-latency reciprocal inhibition exists between the right and left human ES. 5. It is concluded that deep back pain does not influence the stretch reflexes in the back muscles but modulates the voluntary activation of these muscles.  (+info)

Asymmetry of hindlimb muscle activity and cutaneous reflexes after tendon transfers in kittens. (10/474)

The mechanical actions of various ankle muscles were changed by surgically crossing or transferring the tendons in kittens. After the kittens grew to adults, both hindlimbs were implanted with multiple electromyogram (EMG) recording and cutaneous nerve stimulation electrodes to compare the activity of altered and normal muscles. The tendon transfers showed a remarkable tendency to regrow toward normal or only slightly altered mechanical action. In these animals and in the sham-operation controls, the patterns of muscle activity and reflexes were symmetrical in corresponding muscles of the two legs, although they could differ substantially between animals, particularly for the cutaneous reflexes. Eleven animals had at least some persistent alterations in muscle action. Their cutaneous reflex patterns tended to be asymmetric, in some cases quite markedly. EMG activity during unperturbed locomotion and paw-shaking was more symmetrical, but there were some changes in altered muscles and their synergists. The central pattern generators for locomotion and paw-shaking and particularly for cutaneous reflexes during locomotion appear to be at least partially malleable rather than entirely hardwired. This may provide a tool for studying their development and spinal plasticity in general.  (+info)

Early onset cerebellar ataxia with retained tendon reflexes (EOCA) and olivopontocerebellar atrophy (OPCA): a computed tomographic study. (11/474)

Computed tomographic (CT) studies in olivopontocerebellar atrophies (OPCA) and 'early onset cerebellar ataxia with retained tendon reflexes (EOCA)' are few and vary widely in methodology and criteria for cerebellar and brainstem atrophy. In this prospective study, CT scan observations on 26 patients (EOCA-11, OPCA-15) were compared with 31 controls using qualitative and quantitative assessment of cisterns, ventricles and atrophy of brain. Vermian and/or cerebellar hemispheric (predominantly anterior) atrophy was present in 80.8% and both were equally common. Cerebral cortical atrophy (26.9%) and leukoariosis (15.4%) were less frequently seen. Statistically significant atrophy of pons, brachium pontis, cerebellum and midbrain was noted in patient group. No significant differences were observed between EOCA and OPCA groups. Evidence of atrophy did not correlate with either the duration of illness or the severity of cerebellar ataxia in both the groups. The severity of brainstem atrophy in 14 patients with and 12 patients without abnormal brainstem auditory evoked response did not differ significantly. This study highlights the methodology of CT evaluation for brainstem and cerebellar atrophy, draws attention to cerebral atrophy and emphasizes the lack of significant differences in CT morphology between OPCA and EOCA patients.  (+info)

Damping actions of the neuromuscular system with inertial loads: soleus muscle of the decerebrate cat. (12/474)

A transient perturbation applied to a limb held in a given posture can induce oscillations. To restore the initial posture, the neuromuscular system must provide damping, which is the dissipation of the mechanical energy imparted by such a perturbation. Despite their importance, damping properties of the neuromuscular system have been poorly characterized. Accordingly, this paper describes the damping characteristics of the neuromuscular system interacting with inertial loads. To quantitatively examine damping, we coupled simulated inertial loads to surgically isolated, reflexively active soleus muscles in decerebrate cats. A simulated force impulse was applied to the load, causing a muscle stretch, which elicited a reflex response. The resulting deviation from the initial position gave rise to oscillations, which decayed progressively. Damping provided by the neuromuscular system was then calculated from the load kinetics. To help interpret our experimental results, we compared our kinetic measurements with those of an analogous linear viscoelastic system and found that the experimental damping properties differed in two respects. First, the amount of damping was greater for large oscillation amplitudes than for small (damping is independent of amplitude in a linear system). Second, plots of force against length during the induced movements showed that damping was greater for shortening than lengthening movements, reflecting greater effective viscosity during shortening. This again is different from the behavior of a linear system, in which damping effects would be symmetrical. This asymmetric and nonlinear damping behavior appears to be related to both the intrinsic nonlinear mechanical properties of the soleus muscle and to stretch reflex properties. The muscle nonlinearities include a change in muscle force-generating capacity induced by forced lengthening, akin to muscle yield, and the nonlinear force-velocity property of muscle, which is different for lengthening versus shortening. Stretch reflex responses are also known to be asymmetric and amplitude dependent. The finding that damping is greater for larger amplitude motion represents a form of automatic gain adjustment to a larger perturbation. In contrast, because of reduced damping at small amplitudes, smaller oscillations would tend to persist, perhaps contributing to normal or "physiological" tremor. This lack of damping for small amplitudes may represent an acceptable compromise for postural regulation in that there is substantial damping for larger movements, where energy dissipation is more critical. Finally, the directional asymmetry in energy dissipation provided by muscle and reflex properties must be reflected in the neural mechanisms for a stable posture.  (+info)

Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. (13/474)

1. Sensory feedback plays a major role in the regulation of the spinal neural locomotor circuitry in cats. The present study investigated whether sensory feedback also plays an important role during walking in 20 healthy human subjects, by arresting or unloading the ankle extensors 6 deg for 210 ms in the stance phase of gait. 2. During the stance phase of walking, unloading of the ankle extensors significantly (P < 0.05) reduced the soleus activity by 50 % in early and mid-stance at an average onset latency of 64 ms. 3. The onset and amplitude of the decrease in soleus activity produced by the unloading were unchanged when the common peroneal nerve, which innervates the ankle dorsiflexors, was reversibly blocked by local injection of lidocaine (n = 3). This demonstrated that the effect could not be caused by a peripherally mediated reciprocal inhibition from afferents in the antagonist nerves. 4. The onset and amplitude of the decrease in soleus activity produced by the unloading were also unchanged when ischaemia was induced in the leg by inflating a cuff placed around the thigh. At the same time, the group Ia-mediated short latency stretch reflex was completely abolished. This demonstrated that group Ia afferents were probably not responsible for the decrease of soleus activity produced by the unloading. 5. The findings demonstrate that afferent feedback from ankle extensors is of significant importance for the activation of these muscles in the stance phase of human walking. Group II and/or group Ib afferents are suggested to constitute an important part of this sensory feedback.  (+info)

Stretch and H reflexes in triceps surae are similar during tonic and rhythmic contractions in high decerebrate cats. (14/474)

During locomotion in decerebrate and spinal cats the group Ia afferents from hind leg muscles are depolarized rhythmically. An earlier study concluded that this locomotor-related primary afferent depolarization (PAD) does not contribute to modulation of monosynaptic reflex pathways during locomotion. This finding indicated that the neural network generating the locomotor rhythm, the central pattern generator (CPG), does not presynaptically inhibit monosynaptic reflexes. In this investigation we tested this prediction in decerebrate cats by measuring the magnitude of reflexes evoked in ankle extensor muscles during periods of tonic contractions and during sequences of rhythmic contractions. The latter occurred when the animal was induced to walk on a treadmill. At the similar levels of activity in the soleus muscle there was no significant difference in the magnitude of the soleus H reflex in these two behavioral situations. Similar results were obtained for reflexes evoked by brief stretches of the soleus muscle. We also examined the reflexes evoked by ramp-and-hold stretches during periods of rhythmic and tonic activity of the isolated medial gastrocnemius (MG) muscle. At similar levels of background activity, the reflexes evoked in the MG muscle were the same during rhythmic and tonic contractions. Our failure to observe a reduction in the magnitude of H reflexes and stretch reflexes during rhythmic contractions, compared with reflexes evoked at the same level of background activity during tonic contractions, is consistent with the notion that the CPG for stepping does not presynaptically inhibit monosynaptic reflexes during the extension phase of locomotor activity. Our results indicate that presynaptic inhibition of the monosynaptic reflex associated with normal locomotion in cats or humans arises from sources other than the extensor burst generating system of the central pattern generator.  (+info)

EMG activities of two heads of the human lateral pterygoid muscle in relation to mandibular condyle movement and biting force. (15/474)

Electromyographic (EMG) activities of the superior (SUP) and inferior heads (INF) of the lateral pterygoid muscle (LPT) were recorded in humans during voluntary stepwise changes in biting force and jaw position that were adopted to exclude the effects of acceleration and velocity of jaw movements on the muscle activity. The SUP behaved like a jaw-closing muscle and showed characteristic activity in relation to the biting force. It showed a considerable amount of background activity (5-32% of the maximum) even in the intercuspal position without teeth clenching and reached a nearly maximum activity at relatively lower biting-force levels than the jaw-closing muscles during increment of the biting force. Stretch reflexes were found in the SUP, the function of which could be to stabilize the condyle against the biting force that pulls the condyle posteriorly. This notion was verified by examining the biomechanics on the temporomandibular joint. The complex movements of the mandibular condyle in a sagittal plane were decomposed into displacement in the anteroposterior direction (Ac) and angle of rotation (RAc) around a kinesiological specific point on the condyle. In relation to Ac, each head of the LPT showed quite a similar behavior to each other in all types of jaw movements across all subjects. Working ranges of the muscle activities were almost constant (Ac <3 mm for the SUP and Ac >3 mm for the INF). The amount of EMG activity of the SUP changed in inverse proportion to Ac showing a hyperbola-like relation, whereas that of the INF changed rather linearly. The EMG amplitude of the SUP showed a quasilinear inverse relation with RAc in the hinge movement during which the condyle rotated with no movement in the anteroposterior direction. This finding suggests that the SUP controls the angular relationship between the articular disk and the condyle. On the other hand, the position of the disk in relation to the maxilla, not to the condyle, is controlled indirectly by the INF because the disk is attached to the condyle by tendinous ligaments.  (+info)

Monitoring of head injury by myotatic reflex evaluation. (16/474)

OBJECTIVES: (1) To establish the feasibility of myotatic reflex measurement in patients with head injury. (2) To test the hypothesis that cerebral dysfunction after head injury causes myotatic reflex abnormalities through disordered descending control. These objectives arise from a proposal to use reflex measurements in monitoring patients with head injury. METHODS: The phasic stretch reflex of biceps brachii was elicited by a servo-positioned tendon hammer. Antagonist inhibition was evoked by vibration to the triceps. Using surface EMG, the amplitude of the unconditioned biceps reflex and percentage antagonist inhibition were measured. After standardisation in 16 normal adult subjects, the technique was applied to 36 patients with head injury across the range of severity. Objective (1) was addressed by attempting a measurement on each patient without therapeutic paralysis; three patients were also measured under partial paralysis. Objective (2) was addressed by preceding each of the 36 unparalysed measurements with an assessment of cerebral function using the Glasgow coma scale (GCS); rank correlation was employed to test a null hypothesis that GCS and reflex indices are unrelated. RESULTS: In normal subjects, unconditioned reflex amplitude exhibited a positive skew requiring logarithmic transformation. Antagonist inhibition had a prolonged time course suggesting presynaptic mechanisms; subsequent measurements were standardised at 80 ms conditioning test interval (index termed "TI(80)"). Measurements were obtained on all patients, even under therapeutic paralysis (objective (1)). The unconditioned reflex was absent in most patients with GCS less than 5; otherwise it varied little across the patient group. TI(80) fell progressively with lower GCS, although patients' individual GCS could not be inferred from single measurements. Both reflex indices correlated with GCS (p<0.01), thereby dismissing the null hypothesis (objective (2)). CONCLUSION: Cerebral dysfunction in head injury is reflected in myotatic reflex abnormalities which can be measured at the bedside. With greater reproducibility, reflex measurements may assist monitoring of patients with head injury.  (+info)