(1/3846) CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts.

Primary fibroblasts are not efficiently transduced by subgroup C adenovirus (Ad) vectors because they express low levels of the high-affinity Coxsackie virus and adenovirus receptor (CAR). In the present study, we have used primary human dermal fibroblasts as a model to explore strategies by which Ad vectors can be designed to enter cells deficient in CAR. Using an Ad vector expressing the human CAR cDNA (AdCAR) at high multiplicity of infection, primary fibroblasts were converted from being CAR deficient to CAR sufficient. Efficiency of subsequent gene transfer by standard Ad5-based vectors and Ad5-based vectors with alterations in penton and fiber was evaluated. Marked enhancement of binding and transgene expression by standard Ad5 vectors was achieved in CAR-sufficient fibroblasts. Expression by AdDeltaRGDbetagal, an Ad5-based vector lacking the arginine-glycine-aspartate (RGD) alphaV integrin recognition site from its penton base, was achieved in CAR-sufficient, but not CAR-deficient, cells. Fiber-altered Ad5-based vectors, including (a) AdF(pK7)betagal (bearing seven lysines on the end of fiber) (b) AdF(RGD)betagal (bearing a high-affinity RGD sequence on the end of fiber), and (c) AdF9sK betagal (bearing a short fiber and Ad9 knob), demonstrated enhanced gene transfer in CAR-deficient fibroblasts, with no further enhancement in CAR-sufficient fibroblasts. Together, these observations demonstrate that CAR deficiency on Ad targets can be circumvented either by supplying CAR or by modifying the Ad fiber to bind to other cell-surface receptors.  (+info)

(2/3846) A soluble form of the avian hepatitis B virus receptor. Biochemical characterization and functional analysis of the receptor ligand complex.

Avian hepatitis B virus infection is initiated by the specific interaction of the extracellular preS part of the large viral envelope protein with carboxypeptidase D (gp180), the primary cellular receptor. To functionally and biochemically characterize this interaction, we purified a soluble form of duck carboxypeptidase D from a baculovirus expression system, confirmed its receptor function, and investigated the contribution of different preS sequence elements to receptor binding by surface plasmon resonance analysis. We found that preS binds duck carboxypeptidase D with a 1:1 stoichiometry, thereby inducing conformational changes but not oligomerization. The association constant of the complex was determined to be 2.2 x 10(7) M-1 at 37 degreesC, pH 7.4, with an association rate of 4.0 x 10(4) M-1 s-1 and a dissociation rate of 1.9 x 10(-3) s-1, substantiating high affinity interaction of avihepadnaviruses with their receptor carboxypeptidase D. The separately expressed receptor-binding domain, comprising about 50% of preS as defined by mutational analysis, exhibits similar constants. The domain consists of an essential element, probably responsible for the initial receptor contact and a part that contributes to complex stabilization in a conformation sensitive manner. Together with previous results from cell biological studies these data provide new insights into the initial step of hepadnaviral infection.  (+info)

(3/3846) Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis.

The identification of stromal cell-derived factor (SDF)-1alpha as a chemoattractant for human progenitor cells suggests that this chemokine and its receptor might represent critical determinants for the homing, retention, and exit of precursor cells from hematopoietic organs. In this study, we investigated the expression profile of CXCR4 receptor and the biological activity of SDF-1alpha during megakaryocytopoiesis. CD34(+) cells from bone marrow and cord blood were purified and induced to differentiate toward the megakaryocyte lineage by a combination of stem-cell factor (SCF) and recombinant human pegylated megakaryocyte growth and development factor (PEG-rhuMGDF). After 6 days of culture, a time where mature and immature megakaryocytes were present, CD41(+) cells were immunopurified and CXCR4mRNA expression was studied. High transcript levels were detected by a RNase protection assay in cultured megakaryocytes derived from cord blood CD34(+) cells as well as in peripheral blood platelets. The transcript levels were about equivalent to that found in activated T cells. By flow cytometry, a large fraction (ranging from 30% to 100%) of CD41(+) cells showed high levels of CXCR4 antigen on their surface, its expression increasing in parallel with the CD41 antigen during megakaryocytic differentiation. CXCR4 protein was also detected on peripheral blood platelets. SDF-1alpha acts on megakaryocytes by inducing intracellular calcium mobilization and actin polymerization. In addition, in in vitro transmigration experiments, a significant proportion of megakaryocytes was observed to respond to this chemokine. This cell migration was inhibited by pertussis toxin, indicating coupling of this signal to heterotrimeric guanine nucleotide binding proteins. Although a close correlation between CD41a and CXCR4 expession was observed, cell surface markers as well as morphological criteria indicate a preferential attraction of immature megakaryocytes (low level of CD41a and CD42a), suggesting that SDF-1alpha is a potent attractant for immature megakaryocytic cells but is less active on fully mature megakaryocytes. This hypothesis was further supported by the observation that SDF-1alpha induced the migration of colony forming unit-megakaryocyte progenitors (CFU-MK) and the expression of activation-dependent P-selectin (CD62P) surface antigen on early megakaryocytes, although no effect was observed on mature megakaryocytes and platelets. These results indicate that CXCR4 is expressed by human megakaryocytes and platelets. Furthermore, based on the lower responses of mature megakaryocytes and platelets to SDF-1alpha as compared with early precursors, these data suggest a role for this chemokine in the maintenance and homing during early stages of megakaryocyte development. Moreover, because megakaryocytes are also reported to express CD4, it becomes important to reevaluate the role of direct infection of these cells by the human immunodeficiency virus (HIV)-1 in HIV-1-related thrombocytopenia.  (+info)

(4/3846) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides.

Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.  (+info)

(5/3846) The RD114/simian type D retrovirus receptor is a neutral amino acid transporter.

The RD114/simian type D retroviruses, which include the feline endogenous retrovirus RD114, all strains of simian immunosuppressive type D retroviruses, the avian reticuloendotheliosis group including spleen necrosis virus, and baboon endogenous virus, use a common cell-surface receptor for cell entry. We have used a retroviral cDNA library approach, involving transfer and expression of cDNAs from highly infectable HeLa cells to nonpermissive NIH 3T3 mouse cells, to clone and identify this receptor. The cloned cDNA, denoted RDR, is an allele of the previously cloned neutral amino acid transporter ATB0 (SLC1A5). Both RDR and ATB0 serve as retrovirus receptors and both show specific transport of neutral amino acids. We have localized the receptor by radiation hybrid mapping to a region of about 500-kb pairs on the long arm of human chromosome 19 at q13.3. Infection of cells with RD114/type D retroviruses results in impaired amino acid transport, suggesting a mechanism for virus toxicity and immunosuppression. The identification and functional characterization of this retrovirus receptor provide insight into the retrovirus life cycle and pathogenesis and will be an important tool for optimization of gene therapy using vectors derived from RD114/type D retroviruses.  (+info)

(6/3846) Up-regulation of the Pit-2 phosphate transporter/retrovirus receptor by protein kinase C epsilon.

The membrane receptors for the gibbon ape leukemia retrovirus and the amphotropic murine retrovirus serve normal cellular functions as sodium-dependent phosphate transporters (Pit-1 and Pit-2, respectively). Our earlier studies established that activation of protein kinase C (PKC) by treatment of cells with phorbol 12-myristate 13-acetate (PMA) enhanced sodium-dependent phosphate (Na/Pi) uptake. Studies now have been carried out to determine which type of Na/Pi transporter (Pit-1 or Pit-2) is regulated by PKC and which PKC isotypes are involved in the up-regulation of Na/Pi uptake by the Na/Pi transporter/viral receptor. It was found that the activation of short term (2-min) Na/Pi uptake by PMA is abolished when cells are infected with amphotropic murine retrovirus (binds Pit-2 receptor) but not with gibbon ape leukemia retrovirus (binds Pit-1 receptor), indicating that Pit-2 is the form of Na/Pi transporter/viral receptor regulated by PKC. The PKC-mediated activation of Pit-2 was blocked by pretreating cells with the pan-PKC inhibitor bisindolylmaleimide but not with the conventional PKC isotype inhibitor Go 6976, suggesting that a novel PKC isotype is required to regulate Pit-2. Overexpression of PKCepsilon, but not of PKCalpha, -delta, or -zeta, was found to mimic the activation of Na/Pi uptake. To further establish that PKCepsilon is involved in the regulation of Pit-2, cells were treated with PKCepsilon-selective antisense oligonucleotides. Treatment with PKCepsilon antisense oligonucleotides decreased the PMA-induced activation of Na/Pi uptake. These results indicate that PMA-induced stimulation of Na/Pi uptake by Pit-2 is specifically mediated through activation of PKCepsilon.  (+info)

(7/3846) Poliomyelitis in intraspinally inoculated poliovirus receptor transgenic mice.

Mice transgenic with the human poliovirus receptor gene develop clinical signs and neuropathology similar to those of human poliomyelitis when neurovirulent polioviruses are inoculated into the central nervous system (CNS). Factors contributing to disease severity and the frequencies of paralysis and mortality include the poliovirus strain, dose, and gender of the mouse inoculated. The more neurovirulent the virus, as defined by monkey challenge results, the higher the rate of paralysis, mortality, and severity of disease. Also, the time to disease onset is shorter for more neurovirulent viruses. Male mice are more susceptible to polioviruses than females. TGM-PRG-3 mice have a 10-fold higher transgene copy number and produce 3-fold more receptor RNA and protein levels in the CNS than TGM-PRG-1 mice. CNS inoculations with type III polioviruses differing in relative neurovirulence show that these mouse lines are similar in disease frequency and severity, demonstrating that differences in receptor gene dosage and concomitant receptor abundance do not affect susceptibility to infection. However, there is a difference in the rate of accumulation of clinical signs. The time to onset of disease is shorter for TGM-PRG-3 than TGM-PRG-1 mice. Thus, receptor dosage affects the rate of appearance of poliomyelitis in these mice.  (+info)

(8/3846) Serum albumin inhibits echovirus 7 uncoating.

Echoviruses induce a wide spectrum of diseases in man, the most severe being meningitis. In neonates, however, a severe systemic infection can be observed, leading to death. Serum albumin is the most abundant protein in plasma and most interstitial fluids, and its functions include osmoregulation and transport and delivery of hydrophobic molecules such as fatty acids and steroids. The results of cold-synchronized one-step growth analysis of echovirus 7 infection and sucrose-gradient analysis of A-particles suggest that physiological concentrations of albumin block echovirus 7 infection by inhibiting uncoating. The blockage was reversible and was still effective when albumin was added 30 min after virus adsorption. Inhibition of uncoating was confirmed by using rhodanine, a known specific inhibitor of echovirus uncoating. After removal of the albumin blockage, addition of rhodanine perpetuated the inhibition. Serum and interstitial albumin concentrations may limit echovirus infection in vivo and thereby act as an extracellular determinant for echovirus tropism.  (+info)