Enhanced expression of the tie receptor tyrosine kinase in endothelial cells during neovascularization. (33/62)

We have recently cloned a novel human receptor tyrosine kinase, tie, from human leukemia cells showing megakaryoblastoid differentiation. We report here that the 4.4-kb tie messenger RNA (mRNA) is present in all human fetal and mouse embryonic tissues. By in situ hybridization, the tie mRNA was localized to the endothelia of blood vessels and endocardium of 9.5- to 18.5-day mouse embryos. However, tie was not expressed by endothelial cells of developing hepatic sinusoids. Increased tie mRNA signal was seen in proliferating ovarial capillaries during hormone-induced superovulation. Only a weak tie signal was obtained from adult skin, except during wound healing, when the proliferating capillaries in the granulation tissue contained abundant tie RNA. These results suggest that tie may have a role in neovascularization.  (+info)

Signaling and regulation of endothelial cell survival by angiopoietin-2. (34/62)

Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.  (+info)

Interaction between Tie receptors modulates angiogenic activity of angiopoietin2 in endothelial progenitor cells. (35/62)

OBJECTIVE: Ischemia-dependent upregulation of angiopoietin2 (Ang2) led us to hypothesize the potentially proangiogenic Ang2-Tie2 signaling in endothelial progenitor cells (EPCs). Given the well-known vascular destabilizing action of Ang2 in mature endothelium, we investigated the yet unidentified mechanism behind cell-dependent differential activity of Ang2. METHODS AND RESULTS: Both in vitro and in vivo experiments showed that Ang2 promoted angiogenicity of human cord blood-derived EPCs, where Ang2 directly activated Tie2 and its related downstream signaling molecules. However, Ang2 had no such effect in fully differentiated human umbilical vein endothelial cells (HUVECs) under the same condition. Such a cell-dependent Tie2 activation by Ang2 was explained by comparing EPCs and HUVECs, where most Tie2 receptors in EPCs were found to be present unbound to Tie1, whereas those in HUVECs existed as heterocomplexes with Tie1. When Tie2 in HUVECs was prevented from forming heterocomplexes by silencing Tie1 expression, they underwent rapid phosphorylation upon Ang2 treatment, as shown in EPCs. CONCLUSIONS: In contrast with its roles in mature endothelial cells, Ang2 has proangiogenic activities in EPC directly through Tie2 signaling pathway. Such a cell-dependent differential reactivity of Ang2 was for the first time found to be modulated by physical association between Tie1 and Tie2, which inhibited Ang2-mediated Tie2 activation.  (+info)

Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. (36/62)

New vessel formation during development and in the adult is triggered by concerted signals of largely endothelial-specific receptors for ligands of the VEGF, angiopoietin and ephrin families. The signals and genes induced by these receptors operate in the context of additional signals transduced by non-endothelial specific growth factor receptors, inflammatory cytokine receptors as well as adhesion molecules. We summarize here available data on characteristic signaling of the VEGF receptor-2 and the current state of knowledge regarding the additional different receptor tyrosine kinases of the VEGF, Tie and Ephrin receptor families. Furthermore, the potential cross-talk with signals induced by other growth factors and inflammatory cytokines as well as the modulation by VE-cadherin is discussed.  (+info)

Angiopoietin: a TIE(d) balance in tumor angiogenesis. (37/62)

Angiopoietins (ANG-1 and ANG-2) and their TIE-2 receptor tyrosine kinase have wide-ranging effects on tumor malignancy that includes angiogenesis, inflammation, and vascular extravasation. These multifaceted pathways present a valuable opportunity in developing novel inhibition strategies for cancer treatment. However, the regulatory role of ANG-1 and ANG-2 in tumor angiogenesis remains controversial. There is a complex interplay between complementary yet conflicting roles of both the ANGs in shaping the outcome of angiogenesis. Embryonic vascular development suggests that ANG-1 is crucial in engaging interaction between endothelial and perivascular cells. However, recruitment of perivascular cells by ANG-1 has recently been implicated in its antiangiogenic effect on tumor growth. It is becoming clear that TIE-2 signaling may function in a paracrine and autocrine manner directly on tumor cells because the receptor has been increasingly found in tumor cells. In addition, alpha(5)beta(1) and alpha(v)beta(5) integrins were recently recognized as functional receptors for ANG-1 and ANG-2. Therefore, both the ligands may have wide-ranging functions in cellular activities that affect overall tumor development. Collectively, these TIE-2-dependent and TIE-2-independent activities may account for the conflicting findings of ANG-1 and ANG-2 in tumor angiogenesis. These uncertainties have impeded development of a clear strategy to target this important angiogenic pathway. A better understanding of the molecular basis of ANG-1 and ANG-2 activity in the pathophysiologic regulation of angiogenesis may set the stage for novel therapy targeting this pathway.  (+info)

Mechanisms of angiogenesis. (38/62)

Tissue activity of angiogenesis depends on the balance of many stimulating or inhibiting factors. The key signaling system that regulates proliferation and migration of endothelial cells forming the basis of any vessel are vascular endothelium growth factors (VEGF) and their receptors. The VEGF-dependent signaling system is necessary for formation of the embryonic vascular system. Neoangiogenesis during tumor growth is also associated with activation of this signaling system. The biological significance of the effect of such system on the cells depends on the content in tissue of various factors of the VEGF family and their receptors, while in the case of VEGFA it is defined by the ratio of different isoforms of this growth factor. A number of other signaling systems are also involved in regulation of the main steps of vessel formation. The signaling system Dll4/Notch regulates selection of endothelial cells for beginning of angiogenic expansion by endowing particular properties to endothelial cells leading in this process. An important step in vessel stabilization and maturation is vascular wall formation. Signaling system PDGFB/PDGFRbeta as well as angiopoietins Ang1, Ang2, and their receptor Tie2 are involved in recruiting mural cells (pericytes and smooth muscle cells). Identification of key molecules involved in the regulation of angiogenesis may provide new possibilities for development of drugs suitable for inhibition of angiogenesis or its stimulation in various pathologies.  (+info)

Endothelial-mural cell signaling in vascular development and angiogenesis. (39/62)

 (+info)

Regulation of endometrial vascular remodelling: role of the vascular endothelial growth factor family and the angiopoietin-TIE signalling system. (40/62)

 (+info)