Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. (1/62)

Angiogenesis is a prerequisite for solid tumor growth. Glioblastoma multiforme, the most common malignant brain tumor, is characterized by extensive vascular proliferation. We previously showed that transgenic mice expressing a GFAP-v-src fusion gene in astrocytes develop low-grade astrocytomas that progressively evolve into hypervascularized glioblastomas. Here, we examined whether tumor progression triggers angiogenetic signals. We found abundant transcription of vascular endothelial growth factor (VEGF) in neoplastic astrocytes at surprisingly early stages of tumorigenesis. VEGF and v-src expression patterns were not identical, suggesting that VEGF activation was not only dependent on v-src. Late-stage gliomas showed perinecrotic VEGF up-regulation similarly to human glioblastoma. Expression patterns of the endothelial angiogenic receptors flt-1, flk-1, tie-1, and tie-2 were similar to those described in human gliomas, but flt-1 was expressed also in neoplastic astrocytes, suggesting an autocrine role in tumor growth. In crossbreeding experiments, hemizygous ablation of the tumor suppressor genes Rb and p53 had no significant effect on the expression of VEGF, flt-1, flk-1, tie-1, and tie-2. Therefore, expression of angiogenic signals is an early event during progression of GFAP-v-src tumors and precedes hypervascularization. Given the close similarities in the progression pattern between GFAP-v-src and human gliomas, the present results suggest that these mice may provide a useful tool for antiangiogenic therapy research.  (+info)

Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. (2/62)

Activation of endothelial cells, important in processes such as angiogenesis, is regulated by cell surface receptors, including those in the tyrosine kinase (RTK) family. Receptor activity, in turn, can be modulated by phosphorylation, turnover, or proteolytic release of a soluble extracellular domain. Previously, we demonstrated that release of soluble tie-1 receptor from endothelial cells by phorbol myristate acetate (PMA) is mediated through protein kinase C and a Ca2+-dependent protease. In this study, the release of soluble tie-1 was shown to be stimulated by inflammatory cytokines and vascular endothelial growth factor (VEGF), but not by growth factors such as basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFalpha). Release of soluble tie by tumor necrosis factor alpha (TNFalpha) or VEGF occurred within 10 minutes of stimulation and reached maximal levels within 60 minutes. Specificity was shown by fluorescence-activated cell sorting (FACS) analysis; endothelial cells exhibited a significant decrease in cell surface tie-1 expression in response to TNF, whereas expression of epidermal growth factor receptor (EGF-R) and CD31 was stable. In contrast, tie-1 expression on megakaryoblastic UT-7 cells was unaffected by PMA or TNFalpha. Sequence analysis of the cleaved receptor indicated that tie-1 was proteolyzed at the E749/S750 peptide bond in the proximal transmembrane domain. Moreover, the hydroxamic acid derivative BB-24 demonstrated dose-dependent inhibition of cytokine-, PMA-, and VEGF-stimulated shedding, suggesting that the tie-1 protease was a metalloprotease. Protease activity in a tie-1 peptide cleavage assay was (1) associated with endothelial cell membranes, (2) specifically activated in TNFalpha-treated cells, and (3) inhibited by BB-24. Additionally, proliferation of endothelial cells in response to VEGF, but not bFGF, was inhibited by BB-24, suggesting that the release of soluble tie-1 receptor plays a role in VEGF-mediated proliferation. This study demonstrated that the release of soluble tie-1 from endothelial cells is stimulated by inflammatory cytokines and VEGF through the activation of an endothelial membrane-associated metalloprotease.  (+info)

tie-1 protein tyrosine kinase: a novel independent prognostic marker for gastric cancer. (3/62)

Protein tyrosine kinases (PTKs) are a major class of proto-oncogenes that are involved in tumor progression. The purpose of this study was to establish a comprehensive PTK expression profile in gastric cancers, with the objective of identifying possible biomarkers for gastric cancer progression. We have designed degenerate primers according to the consensus catalytic motifs to amplify PTK molecules from gastric cancers by reverse transcriptase-PCR methods. The PTK expression profile was established by sequencing analysis of the cloned PCR products. We have identified 17 PTKs from a gastric adenocarcinoma. Two receptor PTKs, tie-1 and axl, were selected for in situ immunohistochemistry studies because of their higher expression level and their described roles in adhesion, invasion, and angiogenesis. Among the 97 gastric adenocarcinoma tissues examined, we observed positive immunohistochemical staining of tie-1 PTK in 69 and positive staining of axl kinase in 71 tissues. Statistical analysis with clinicopathological features indicates that tie-1 kinase expression is inversely correlated with patients' survival, whereas axl fails to show similar clinical significance. Our results illustrate the utility of tyrosine kinase gene family profiling in human gastric cancers and show that tie-1 tyrosine kinase may serve as a novel independent prognostic marker for gastric adenocarcinoma patients.  (+info)

Endothelial growth factor receptors in human fetal heart. (4/62)

BACKGROUND: Endothelial receptor tyrosine kinases include 3 members of the vascular endothelial growth factor receptor (VEGFR) family and 2 members of the angiopoietin receptor (Tie) family. In addition, the VEGF(165) isoform binds to neuropilin-1 (NP-1), a receptor for collapsins/semaphorins. The importance of these receptors for vasculogenesis and angiogenesis has been shown in gene-targeted mice, but so far, little is known about their exact expression patterns in the human vasculature. METHODS AND RESULTS: Frozen sections of human fetal heart were stained immunohistochemically with receptor-specific monoclonal (VEGFR, Tie) or polyclonal (NP-1) antibodies. The following patterns were observed: The endocardium was positive for VEGFR-1, VEGFR-2, NP-1, Tie-1, and Tie-2 but negative for VEGFR-3. The coronary vessels were positive for Tie-1, Tie-2, VEGFR-1, and NP-1 and negative for VEGFR-2 and VEGFR-3. Myocardial capillaries and epicardial blood vessels stained for VEGFR-1, VEGFR-2, NP-1, and Tie-1; myocardial capillaries and epicardial veins weakly for Tie-2; and epicardial lymphatic vessels for VEGFR-2 and VEGFR-3, weakly for Tie-1 and Tie-2, but not for VEGFR-1 or NP-1. CONCLUSIONS: The results demonstrate differential expression of the endothelial growth factor receptors in distinct types of vessels in the human heart. This information is useful for the understanding of their roles in physiological and pathological processes and for their diagnostic and therapeutic application in cardiovascular medicine.  (+info)

Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting. (5/62)

Using degenerate polymerase chain reaction, we isolated a cDNA encoding a novel 493-amino acid protein from human and mouse adult heart cDNAs and have designated it angiopoietin-related protein-2 (ARP2). The NH(2)-terminal and COOH-terminal portions of ARP2 contain the characteristic coiled-coil domain and fibrinogen-like domain that are conserved in angiopoietins. ARP2 has two consensus glycosylation sites and a highly hydrophobic region at the NH(2) terminus that is typical of a secretory signal sequence. Recombinant ARP2 expressed in COS cells is secreted and glycosylated. In human adult tissues, ARP2 mRNA is most abundant in heart, small intestine, spleen, and stomach. In rat embryos, ARP2 mRNA is most abundant in the blood vessels and skeletal muscles. Endothelial and vascular smooth muscle cells also contain ARP2 mRNA. Recombinant ARP2 protein induces sprouting in vascular endothelial cells but does not bind to the Tie1 or Tie2 receptor. These results suggest that ARP2 may exert a function on endothelial cells through autocrine or paracrine action.  (+info)

Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. (6/62)

TEK (TIE2) and TIE (TIE1) are structurally related receptor tyrosine kinases expressed in endothelial cells and their precursors. Genetic studies in the mouse have revealed essential functions of both receptors in angiogenic expansion of the vasculature during development. As previously shown, mouse embryos homozygous for a disrupted Tek allele die by day 10.5 of embryogenesis due to endocardial defects, hemorrhaging, and impaired vascular network formation. Furthermore, TIE is required cell autonomously for endothelial cell survival and extension of the vascular network during late embryogenesis. Here we have investigated possible redundancy in the TEK and TIE signalling pathways during vascular development. Vasculogenesis proceeds normally in embryos lacking both TEK and TIE, although such embryos die early in gestation of multiple cardiovascular defects. Mosaic analysis revealed an absolute requirement for TEK in the endocardium at E10.5, whereas TEK and TIE are dispensable for the initial assembly of the rest of the vasculature. In contrast, both receptors are required in the microvasculature during late organogenesis and in essentially all blood vessels of the adult. This analysis demonstrates essential functions for TEK and TIE in maintaining the integrity of the mature vasculature.  (+info)

Growth factor signaling pathways in vascular development. (7/62)

Recent research on the formation and maintenance of the vasculature in the embryo and in the adult has provided a greater understanding of the cellular signals involved in these processes. With this understanding comes the potential means of controlling vascularization in pathological situations such as tumorigenesis and wounding. For the purpose of this review, we will discuss the key receptor tyrosine kinases involved in vascular function and the molecules which relay signals downstream of receptor activation. The receptor tyrosine kinases discussed include the vascular endothelial cell growth factor receptors, Eph receptors, Tie1, and Tie2, all of which are expressed on vascular endothelial cells. We also discuss the roles of the platelet derived growth factor receptors which are expressed on vascular smooth muscle cells. While all of these receptor tyrosine kinases activate many similar effector molecules, some of the signals initiated appear to be distinct. This may explain, at least in part, how different receptor tyrosine kinases expressed in overlapping patterns on the developing vasculature, direct unique biological functions.  (+info)

VEGF, its receptors and the tie receptors in recurrent miscarriage. (8/62)

The aetiology of recurrent miscarriage (at least three consecutive miscarriages) usually remains unsolved. The vascular endothelial growth factor (VEGF) family of proteins, together with their receptors and the Tie (tyrosine kinase with immunoglobulin and epidermal growth factor homology domains) receptors, are crucial for embryonic development. Therefore, we used immunohistochemistry to analyse the expression of VEGF, the VEGF receptors (VEGFR)-1, -2, and -3, and the Tie-1 and Tie-2 receptors in placental and decidual tissue of women with a history of recurrent miscarriage and missed abortion (MA; n = 12) or blighted ovum (BO; n = 6), and from normal early terminated pregnancies (n = 12). Compared with controls, the MA and BO groups showed: (i) diminished placental trophoblastic VEGF immunoreactivity; (ii) weaker VEGFR-1 and -2 immunoreactivity in decidual vascular endothelium; (iii) reduced placental trophoblastic Tie-1 receptor immunoreactivity; and (iv) reduced decidual vascular endothelial Tie-1 and -2 receptor immunoreactivity. The absence of VEGFR-3 immunoreactivity in decidual vascular endothelium was also noted in all study groups. Interestingly, placental villi from the BO group presented blood vessel-like structures negative for von Willebrand factor, but positive for VEGF, VEGFR-1, -2, -3, Tie-1 and Tie-2 receptor. We conclude that the expression of these antigens may be altered in recurrent miscarriages.  (+info)