Mechanism of corepressor binding and release from nuclear hormone receptors. (41/1263)

The association of transcription corepressors SMRT and N-CoR with retinoid and thyroid receptors results in suppression of basal transcriptional activity. A key event in nuclear receptor signaling is the hormone-dependent release of corepressor and the recruitment of coactivator. Biochemical and structural studies have identified a universal motif in coactivator proteins that mediates association with receptor LBDs. We report here the identity of complementary acting signature motifs in SMRT and N-CoR that are sufficient for receptor binding and ligand-induced release. Interestingly, the motif contains a hydrophobic core (PhixxPhiPhi) similar to that found in NR coactivators. Surprisingly, mutations in the amino acids that directly participate in coactivator binding disrupt the corepressor association. These results indicate a direct mechanistic link between activation and repression via competition for a common or at least partially overlapping binding site.  (+info)

An element in the region responsible for premature termination of transcription mediates repression of c-myc gene expression by thyroid hormone in neuroblastoma cells. (42/1263)

The thyroid hormone (T3) blocks proliferation and induces differentiation of neuroblastoma N2a-beta cells that express the thyroid hormone receptor (TR) beta1 isoform. c-Myc is required for cell cycle progression, and this study shows that T3-induced neuronal differentiation is preceded by a rapid decrease of c-myc gene expression. A negative T3 responsive element (TRE), arranged as an inverted palindrome spaced by three nucleotides, has been identified within the first exon between nucleotides +237 and +268. The TRE is adjacent to the binding site for the transcriptional repressor CCCTC binding factor and maps precisely within the region of RNA polymerase II pausing and release, suggesting a direct implication of TR on premature termination of transcription. Furthermore, the TRE confers repression by T3 to an heterologous promoter only when inserted downstream of the transcription initiation site. Binding of CCCTC binding factor and TR to their cognate sites in the region of transcriptional attenuation, as well as direct interactions between both factors, could facilitate the formation of a repressor complex and the inhibition of c-myc gene expression. These studies provide insight into mechanisms by which TR mediate transcriptional repression and contribute to the understanding of the important effects of thyroid hormones on growth and differentiation of neuronal cells.  (+info)

Thyroid hormone-independent interaction between the thyroid hormone receptor beta2 amino terminus and coactivators. (43/1263)

Thyroid hormone receptors (TRs) mediate hormone action by binding to DNA response elements (TREs) and either activating or repressing gene expression in the presence of ligand, T(3). Coactivator recruitment to the AF-2 region of TR in the presence of T(3) is central to this process. The different TR isoforms, TR-beta1, TR-beta2, and TR-alpha1, share strong homology in their DNA- and ligand-binding domains but differ in their amino-terminal domains. Because TR-beta2 exhibits greater T(3)-independent activation on TREs than other TR isoforms, we wanted to determine whether coactivators bound to TR-beta2 in the absence of ligand. Our results show that TR-beta2, unlike TR-beta1 or TR-alpha1, is able to bind certain coactivators (CBP, SRC-1, and pCIP) in the absence of T(3) through a domain which maps to the amino-terminal half of its A/B domain. This interaction is specific for certain coactivators, as TR-beta2 does not interact with other co-factors (p120 or the CBP-associated factor (pCAF)) in the absence of T(3). The minimal TR-beta2 domain for coactivator binding is aa 21-50, although aa 1-50 are required for the full functional response. Thus, isoform-specific regulation by TRs may involve T(3)-independent coactivator recruitment to the transcription complex via the AF-1 domain.  (+info)

Nuclear orphan receptors regulate transcription of the gene for the human luteinizing hormone receptor. (44/1263)

An imperfect estrogen receptor half-site response element direct-repeat, located within the TATA-less promoter of the human luteinizing hormone receptor (hLHR), was identified as an inhibitory site for Sp1/Sp3-driven basal transcription. Isolation of proteins recognizing this site by yeast one-hybrid screening of a human placenta cDNA library revealed three nuclear orphan receptors, EAR2, EAR3/COUP-TFI, and TR4. Electrophoresis mobility shift assays demonstrated that the in vitro translated nuclear orphan receptors specifically bound the direct-repeat motif of the hLHR promoter. Also, endogenous EAR2 and EAR3/COUP-TFI from JAR cell and human testis and TR4 from testes bound this motif in electrophoresis mobility shift assays. Functional analyses in CV-1 cells showed that EAR2 and EAR3/COUP-TFI repressed the hLHR promoter activity by up to 70% in a dose-dependent and sequence-specific manner. Conversely, TR4 activated the hLHR promoter activity up to 2.5-fold through binding to the same cis-element. The stimulation was reversed by coexpression of EAR2 or EAR3/COUP-TFI, indicating their competitive binding for this site. Such recognition of a common cognate site by the proteins with antagonistic functions implies that a net regulation of the hLHR gene may result from the relative availability of repressors and activator in a physiological state. This also may contribute to the differential expression of the hLHR gene in gonadal and non-gonadal tissues.  (+info)

Cloning and characterization of RAP250, a novel nuclear receptor coactivator. (45/1263)

Ligand-induced transcriptional activation of gene expression by nuclear receptors is dependent on recruitment of coactivators as intermediary factors. The present work describes the cloning and characterization of RAP250, a novel human nuclear receptor coactivator. The results of in vitro and in vivo experiments indicate that the interaction of RAP250 with nuclear receptors is ligand-dependent or ligand-enhanced depending on the nuclear receptor and involves only one short LXXLL motif called nuclear receptor box. Transient transfection assays further demonstrate that RAP250 has a large intrinsic glutamine-rich activation domain and can significantly enhance the transcriptional activity of several nuclear receptors, acting as a coactivator. Interestingly, Northern blot and in situ hybridization analyses reveal that RAP250 is widely expressed with the highest expression in reproductive organs (testis, prostate and ovary) and brain. Together, our data suggest that RAP250 may play an important role in mammalian gene expression mediated by nuclear receptor.  (+info)

Developmental expression of thyroid hormone receptors in the rat testis. (46/1263)

Sertoli cell proliferation in the rat is completed by Days 15-20 postnatally. Thyroid hormones appear to regulate the duration of Sertoli cell proliferation, affecting adult Sertoli cell number and hence the capacity of the testis to produce sperm. In the present study, a combination of immunohistochemistry, immunoblot analysis, and reverse transcription-polymerase chain reaction was used to demonstrate the expression pattern of thyroid hormone receptors (TR) in the juvenile and adult rat testis. The results indicated that TRalpha1 was expressed in proliferating Sertoli cell nuclei, its expression decreasing coincident with the cessation of proliferation. TRalpha2, TRalpha3, and TRbeta1 mRNAs were expressed at low levels during development; however, the corresponding protein was not detected by immunoblot analysis. In addition, TRalpha1 was found to be expressed in germ cells from intermediate spermatogonia to mid-cycle pachytene spermatocytes. Immunohistochemistry also demonstrated TR expression in a subset of interstitial cells. The demonstration of TR expression in germ cells undergoing spermatogenic differentiation suggests a possible role for thyroid hormones in the adult testis.  (+info)

p300 requires its histone acetyltransferase activity and SRC-1 interaction domain to facilitate thyroid hormone receptor activation in chromatin. (47/1263)

We have characterized the mechanism by which coactivator p300 facilitates transcriptional activation mediated by the heterodimer of thyroid hormone (T3) receptor and 9-cis retinoid acid receptor (TR-RXR) in the context of chromatin. We demonstrate that, while p300 can enhance the transcriptional activation mediated by both liganded TR-RXR and GAL4-VP16, its histone acetyltransferase activity (HAT) is required for its ability to facilitate liganded TR-RXR- but not GAL4-VP16-mediated transcriptional activation. To understand how p300 is recruited by liganded TR-RXR, we have analyzed the interactions between TR-RXR and p300 as well as SRC-1 family coactivators. We show that, in contrast to a strong hormone-dependent interaction between TR-RXR and SRC-1 family coactivators, p300 displays minimal, if any, T3-dependent interaction with TR-RXR. However, p300 can be recruited by liganded TR-RXR through its interaction with SRC-1 family coactivators. Consistent with the protein-protein interaction profile described above, we demonstrate that the SRC-1 interaction domain of p300 is important for its ability to facilitate transcriptional activation mediated by TR-RXR, whereas its nuclear receptor interaction domain is dispensable. Collectively, these results reveal the functional significance of the HAT activity of p300 and define an indirect mode for the action of p300 in TR-RXR activation.  (+info)

Differential regulation of three thyroid hormone-responsive matrix metalloproteinase genes implicates distinct functions during frog embryogenesis. (48/1263)

Matrix metalloproteinases (MMPs) are a family of Zn(2+)-dependent extracellular proteases capable of degrading various proteinaceous components of the extracellular matrix (ECM). They are expressed in developmental and pathological processes such as postlactation mammary gland involution and tumor metastasis. Relatively few studies have been carried out to investigate the function of MMPs during embryogenesis and postembryonic organ development. Using Xenopus development as a model system, we and others have previously isolated three MMP genes as thyroid hormone response genes. They have distinct temporal and organ-specific regulations during thyroid hormone-dependent metamorphosis. We demonstrate here that three MMPs-stromelysin-3 (ST3), collagenases-3 (Col3), and collagenases-4 (Col4)-also have distinct spatial and temporal expression profiles during embryogenesis. Consistent with earlier suggestions that ST3 is a direct thyroid hormone response gene whereas Col3 and Col4 are not, we show that precocious overexpression of thyroid hormone receptors in the presence of thyroid hormone lead to increased expression of ST3, but not Col3. Furthermore, our whole-mount in situ hybridizations reveal a tight but distinct association of individual MMPs with tissue remodeling in different regions of the animal during embryogenesis. These results suggest that ST3 is likely to play a role in ECM remodeling that facilitate apoptotic tissue remodeling or resorption, whereas Col3 and Col4 appear to participate in connective tissue degradation during development.  (+info)