NRIF3 is a novel coactivator mediating functional specificity of nuclear hormone receptors. (25/1263)

Many nuclear receptors are capable of recognizing similar DNA elements. The molecular event(s) underlying the functional specificities of these receptors (in regulating the expression of their native target genes) is a very important issue that remains poorly understood. Here we report the cloning and analysis of a novel nuclear receptor coactivator (designated NRIF3) that exhibits a distinct receptor specificity. Fluorescence microscopy shows that NRIF3 localizes to the cell nucleus. The yeast two-hybrid and/or in vitro binding assays indicated that NRIF3 specifically interacts with the thyroid hormone receptor (TR) and retinoid X receptor (RXR) in a ligand-dependent fashion but does not bind to the retinoic acid receptor, vitamin D receptor, progesterone receptor, glucocorticoid receptor, or estrogen receptor. Functional experiments showed that NRIF3 significantly potentiates TR- and RXR-mediated transactivation in vivo but has little effect on other examined nuclear receptors. Domain and mutagenesis analyses indicated that a novel C-terminal domain in NRIF3 plays an essential role in its specific interaction with liganded TR and RXR while the N-terminal LXXLL motif plays a minor role in allowing optimum interaction. Computer modeling and subsequent experimental analysis suggested that the C-terminal domain of NRIF3 directly mediates interaction with liganded receptors through an LXXIL (a variant of the canonical LXXLL) module while the other part of the NRIF3 protein may still play a role in conferring its receptor specificity. Identification of a coactivator with such a unique receptor specificity may provide new insight into the molecular mechanism(s) of receptor-mediated transcriptional activation as well as the functional specificities of nuclear receptors.  (+info)

Effects of contractile activity and hypothyroidism on nuclear hormone receptor mRNA isoforms in rat skeletal muscle. (26/1263)

Absolute molecule numbers of thyroid hormone receptor isoforms T3Ralpha1, T3Ralpha2, T3Rbeta1, and the 9-cis retinoic acid receptor gamma were measured in adult fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles of rat by competitive reverse transcriptase (RT)-PCR. The nuclear hormone receptor corepressor (NCoR) mRNA was quantified by noncompetitive RT-PCR in the same muscles. T3Rbeta1 mRNA was the most abundant isoform in both muscle types. All nuclear hormone receptor (NHR) mRNAs were found at lower molecule numbers in fast than in slow muscle. No differences existed with regard to NCoR mRNA. With the exception of T3Ralpha1 in the EDL, hypothyroidism led to decreases in NHR mRNAs, especially in SOL, but did not significantly affect the level of NCoR mRNA. Enhanced neuromuscular activity of the fast EDL muscle, as induced by chronic low-frequency stimulation, transiently increased NHR mRNAs, but decreased NCoR mRNA. These chronic-low-frequency-stimulation-induced changes were attenuated by hypothyroidism.  (+info)

Peroxisome proliferator-activated receptors: a family of lipid-activated transcription factors. (27/1263)

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear transcription factors that belong to the steroid receptor superfamily. This family of PPARs includes PPARalpha, PPARdelta, PPARgamma1, and PPARgamma2. These PPARs are related to the T3 and vitamin D(3) receptors and bind to a hexameric direct repeat as a heterodimeric complex with retinoid receptor Xalpha. PPARs regulate the expression of a wide array of genes that encode proteins involved in lipid metabolism, energy balance, eicosanoid signaling, cell differentiation, and tumorigenesis. A unique feature of these steroid-like receptors is that the physiologic ligands for PPARs appear to be fatty acids from the n-6 and n-3 families of fatty acids and their respective eicosanoid products. This review describes the characteristics, regulation, and gene targets for PPARs and relates their effects on gene expression to physiologic outcomes that affect lipid and glucose metabolism, thermogenesis, atherosclerosis, and cell differentiation.  (+info)

Differential expression of thyroid hormone receptor isoforms is strikingly related to cardiac and skeletal muscle phenotype during postnatal development. (28/1263)

The genomic actions of thyroid hormones (THs) are mediated by receptors (TRs) that are encoded by two protooncogenes, c-erbA-alpha and c-erbA-beta. The precise functions of the TR isoforms are unclear and this study focuses on the potential roles of the TRalpha and TRbeta isoforms in mammalian striated muscles postnatally. The porcine TRalpha1, TRalpha2 and TRbeta1 cDNAs were first cloned, sequenced and characterised by Northern blotting. A quantitative analysis of TR isoform expression was then undertaken, using RNase protection analysis with novel riboprobes designed to detect relative expression levels of TRalpha1, TRalpha2, TRbeta1 and TRbeta2, in functionally distinct muscles from 7-week-old pigs kept under controlled conditions of nutrition and thermal environment. We found a striking muscle-specific pattern of TRalpha isoform distribution: in heart the mRNA level of TRalpha2 (non-TH binding) was markedly greater (P<0.01) than that of TRalpha1 (TH binding); in longissimus dorsi the opposite pattern of expression occurred (TRalpha1>TRalpha2, P<0.001); in soleus, diaphragm and rhomboideus there were no differences between the two isoforms. The overall abundance of TRbeta was very much lower than that of TRalpha, and TRbeta1 was expressed at a higher level than TRbeta2 in all muscles. Together with recent data from TR gene inactivation studies and the established role of TH in determining myosin heavy chain isoform expression and muscle phenotype, these results suggest a role for differential expression of TR isoforms in acquisition and maintenance of optimal cardiac and skeletal muscle function.  (+info)

p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption. (29/1263)

We investigate the role of the transcriptional coactivator p300 in gene activation by thyroid hormone receptor (TR) on addition of ligand. The ligand-bound TR targets chromatin disruption independently of gene activation. Exogenous p300 facilitates transcription from a disrupted chromatin template, but does not itself disrupt chromatin in the presence or absence of ligand-bound receptor. Nevertheless, the acetyltransferase activity of p300 is required to facilitate transcription from a disrupted chromatin template. Expression of E1A prevents aspects of chromatin remodeling and transcriptional activation dependent on TR and p300. E1A selectively inhibits the acetylation of non-histone substrates. E1A does not prevent the assembly of a DNase I-hypersensitive site induced by TR, but does inhibit topological alterations and the loss of canonical nucleosome arrays dependent on the addition of ligand. Mutants of E1A incompetent for interaction with p300 partially inhibit chromatin disruption but still allow nuclear receptors to activate transcription. We conclude that p300 has no essential role in chromatin disruption, but makes use of acetyltransferase activity to stimulate transcription at a subsequent step.  (+info)

Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. (30/1263)

We have recently shown that the orphan nuclear receptor Nur77 (NGFI-B) is most active in transcription when it is interacting with a cognate DNA sequence as a homodimer. Further, we have shown that the target for Nur77 dimers, the Nur response element (NurRE), is responsive to physiological stimuli in both endocrine and lymphoid cells, whereas other DNA targets of Nur77 action are not. The Nur77 subfamily also includes two related receptors, Nur-related factor 1 (Nurr1) and neuron-derived orphan receptor 1 (NOR-1). Often, more than one member of this subfamily is induced in response to extracellular signals. We now show that Nur77 and Nurr1 form heterodimers in vitro in the presence or absence of NurRE, and we have documented interactions between these proteins in vivo by using a two-hybrid system in mammalian cells. These heterodimers synergistically enhance transcription from NurRE reporters in comparison to that seen with homodimers. The naturally occurring NurRE from the pro-opiomelanocortin gene preferentially binds and activates transcription in the presence of Nur77 homo- or heterodimers, while a consensus NurRE sequence does not show this preference. Taken together, the data indicate that members of the Nur77 subfamily are most potent as heterodimers and that different dimers exhibit target sequence preference. Thus, we propose that a combinatorial code relying on specific NurRE sequences might be responsible for the activation of subsets of target genes by one of the members of the Nur77 subfamily of transcription factors.  (+info)

Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. (31/1263)

Extraskeletal myxoid chondrosarcomas (EMCs) are characterized by a recurrent t(9;22)(q22;q12) translocation, resulting in the fusion of the EWS gene in 22q12 and the TEC gene in 9q22. Here we report that a third member of the EWS, TLS/FUS gene family, TAF2N, can replace EWS as a fusion partner to TEC in EMC. Two tumors, one with a novel t(9;17)(q22;q11) variant translocation and one with an apparently normal karyotype, expressed TAF2N-TEC fusion transcripts. In both cases, the chimeric transcripts were shown to contain exon 6 of TAF2N fused to the entire coding region of TEC. This transcript is structurally and functionally very similar to the EWS-TEC fusions. The exchange of the EWS NH2-terminal part with the TAF2N NH2-terminal part in EMC further underscores the oncogenic potential of these protein domains as partners in fusion genes.  (+info)

A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. (32/1263)

In earlier research, we identified a 43-kDa c-ErbAalpha1 protein (p43) in the mitochondrial matrix of rat liver. In the present work, binding experiments indicate that p43 displays an affinity for triiodothyronine (T3) similar to that of the T3 nuclear receptor. Using in organello import experiments, we found that p43 is targeted to the organelle by an unusual process similar to that previously reported for MTF1, a yeast mitochondrial transcription factor. DNA-binding experiments demonstrated that p43 specifically binds to four mitochondrial DNA sequences with a high similarity to nuclear T3 response elements (mt-T3REs). Using in organello transcription experiments, we observed that p43 increases the levels of both precursor and mature mitochondrial transcripts and the ratio of mRNA to rRNA in a T3-dependent manner. These events lead to stimulation of mitochondrial protein synthesis. In transient-transfection assays with reporter genes driven by the mitochondrial D loop or two mt-T3REs located in the D loop, p43 stimulated reporter gene activity only in the presence of T3. All these effects were abolished by deletion of the DNA-binding domain of p43. Finally, p43 overexpression in QM7 cells increased the levels of mitochondrial mRNAs, thus indicating that the in organello influence of p43 was physiologically relevant. These data reveal a novel hormonal pathway functioning within the mitochondrion, involving a truncated form of a nuclear receptor acting as a potent mitochondrial T3-dependent transcription factor.  (+info)