Role of thrombin receptor in breast cancer invasiveness. (1/888)

Invasion, the ability of an epithelial cancer cell to detach from and move through a basement membrane, is a central process in tumour metastasis. Two components of invasion are proteolysis of extracellular matrix and cellular movement through it. A potential promoter of these two processes is thrombin, the serine proteinase derived from the ubiquitous plasma protein prothrombin. Thrombin promotes the invasion of MDA-MB231 breast tumour cells (a highly aggressive cell line) in an in vitro assay. Invasion by MDA-MB436 and MCF-7 cells, less aggressive cell lines, is not promoted by thrombin. Thrombin, added to the cells, is a stimulator of cellular movement; fibroblast-conditioned medium is the chemotaxin. Thrombin-promoted invasion is inhibited by hirudin. Stimulation of invasion is a receptor-mediated process that is mimicked by a thrombin receptor-activating peptide. Thrombin has no effect on chemotaxis in vitro. Thrombin receptor is detectable on the surface of MDA-MB231 cells, but not on the other two cell lines. Introduction of oestrogen receptors into MDA-MB231 cells by transfection with pHEO had no effect on thrombin receptor expression, in the presence or absence of oestradiol. This paper demonstrates that thrombin increases invasion by the aggressive breast cancer cell line MDA-MB231 by a thrombin receptor-dependent mechanism.  (+info)

Binding conformers searching method for ligands according to the structures of their receptors and its application to thrombin inhibitors. (2/888)

AIM: To develop a method of finding binding conformers for ligands according to the three-dimensional structures of their receptors. METHODS: Combining the systematic search method of ligand with the molecular docking approach of ligand fitting into its receptor, we developed a binding conformer searching method for ligands. RESULTS: The binding conformers of phosphonopeptidyl thrombin inhibitors were recognized. The binding (interaction) energies between these inhibitors and thrombin were calculated with molecular mechanical method. CONCLUSION: Both of the total binding energies and steric binding energies have good correlations with the inhibitory activities of these thrombin inhibitors, demonstrating that our approach is reasonable. It can also be used to explain the inhibition mechanism of thrombin interacting with these inhibitors.  (+info)

Bronchoconstrictor effect of thrombin and thrombin receptor activating peptide in guinea-pigs in vivo. (3/888)

1. Several thrombin cellular effects are dependent upon stimulation of proteinase activated receptor-1 (PAR-1) localized over the cellular surface. Following activation by thrombin, a new N-terminus peptide is unmasked on PAR-1 receptor, which functions as a tethered ligand for the receptor itself. Synthetic peptides called thrombin receptor activating peptides (TRAPs), corresponding to the N-terminus residue unmasked, reproduce several thrombin cellular effects, but are devoid of catalytic activity. We have evaluated the bronchial response to intravenous administration of human alpha-thrombin or a thrombin receptor activating peptide (TRAP-9) in anaesthetized, artificially ventilated guinea-pigs. 2. Intravenous injection of thrombin (100 microkg(-1)) caused bronchoconstriction that was recapitulated by injection of TRAP-9 (1 mg kg(-1)). Animal pretreatment with the thrombin inhibitor Hirulog (10 mg kg(-1) i.v.) prevented thrombin-induced bronchoconstriction, but did not affect bronchoconstriction induced by TRAP-9. Both agents did not induce bronchoconstriction when injected intravenously to rats. 3. The bronchoconstrictor effect of thrombin and TRAP-9 was subjected to tolerance; however, in animals desensitized to thrombin effect, TRAP-9 was still capable of inducing bronchoconstriction, but not vice versa. 4. Depleting animals of circulating platelets prevented bronchoconstriction induced by both thrombin and TRAP-9. 5. Bronchoconstriction was paralleled by a biphasic change in arterial blood pressure, characterized by a hypotensive phase followed by a hypertensive phase. Thrombin-induced hypotension was not subject to tolerance and was inhibited by Hirulog; conversely, hypertension was subject to tolerance and was not inhibited by Hirulog. Hypotension and hypertension induced by TRAP-9 were neither subject to tolerance nor inhibited by Hirulog. 6. Our results indicate that thrombin causes bronchoconstriction in guinea-pigs through a mechanism that requires proteolytic activation of its receptor and the exposure of the tethered ligand peptide. Platelet activation might be triggered by the thrombin effect.  (+info)

Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. (4/888)

Because of the role of thrombin and platelets in myocardial infarction and other pathological processes, identifying and blocking the receptors by which thrombin activates platelets has been an important goal. Three protease-activated receptors (PARs) for thrombin -- PAR1, PAR3, and PAR4 -- are now known. PAR1 functions in human platelets, and the recent observation that a PAR4-activating peptide activates human platelets suggests that PAR4 also acts in these cells. Whether PAR1 and PAR4 account for activation of human platelets by thrombin, or whether PAR3 or still other receptors contribute, is unknown. We have examined the roles of PAR1, PAR3, and PAR4 in platelets. PAR1 and PAR4 mRNA and protein were detected in human platelets. Activation of either receptor was sufficient to trigger platelet secretion and aggregation. Inhibition of PAR1 alone by antagonist, blocking antibody, or desensitization blocked platelet activation by 1 nM thrombin but only modestly attenuated platelet activation by 30 nM thrombin. Inhibition of PAR4 alone using a blocking antibody had little effect at either thrombin concentration. Strikingly, simultaneous inhibition of both PAR1 and PAR4 virtually ablated platelet secretion and aggregation, even at 30 nM thrombin. These observations suggest that PAR1 and PAR4 account for most, if not all, thrombin signaling in platelets and that antagonists that block these receptors might be useful antithrombotic agents.  (+info)

Acceleration of Ca2+ ionophore-induced arachidonic acid liberation by thrombin without the proteolytic action toward the receptor in human platelets. (5/888)

We investigated the regulation of arachidonic acid liberation catalyzed by group-IV cytosolic phospholipase A2 (cPLA2) in human platelets upon stimulation with thrombin through interaction with protease-activated receptor-1 (PAR-1) or glycoprotein Ib. Leupeptin, a protease inhibitor, completely inhibited thrombin-induced arachidonic acid liberation and Ca2+ mobilization, with inhibition of its protease activity. However, preincubation with thrombin in the presence of leupeptin potentiated Ca2+ ionophore-induced arachidonic acid liberation. The preincubation did not affect the intracellular Ca2+ level or cPLA2 activity in response to ionomycin. Human leukocyte elastase, which cleaves glycoprotein Ib, did not inhibit the enhancement of arachidonic acid liberation by thrombin in the presence of leupeptin. However, the effect of thrombin with leupeptin was abolished by a peptide corresponding to residues 54-65 of hirudin (hirudin peptide), which impairs the binding of thrombin to PAR-1. Furthermore, Phe-Pro-Arg chloromethyl ketone (PPACK)-thrombin, which binds to platelets but has no protease activity, also enhanced Ca2+ ionophore-induced arachidonic acid liberation. In contrast, trypsin with leupeptin did not mimic the effect of thrombin with leupeptin, and furthermore trypsin-induced arachidonic acid liberation was insensitive to hirudin peptide. On the basis of the present results, we suggest that thrombin may accelerate cPLA2-catalyzed arachidonic acid liberation through non-proteolytic action toward PAR-1 but not toward glycoprotein Ib in co-operation with the proteolytic action leading to Ca2+ mobilization.  (+info)

Pro- and anti-inflammatory actions of thrombin: a distinct role for proteinase-activated receptor-1 (PAR1). (6/888)

1. Thrombin has well characterized pro-inflammatory actions that have recently been suggested to occur via activation of its receptor, proteinase-activated receptor-1 (PAR1). 2. In the present study, we have compared the effects of thrombin to those of two peptides that selectively activate the PAR1 receptor, in a rat hindpaw oedema model. We have also examined whether or not thrombin can exert anti-inflammatory activity in this model. 3. Both thrombin and the two PAR1 activating peptides induced significant oedema in the rat hindpaw following subplantar injection. 4. The oedema induced by thrombin was abolished by pre-incubation with hirudin, and was markedly reduced in rats in which mast cells were depleted through treatment with compound 48/80 and in rats pretreated with indomethacin. In contrast, administration of the PAR1 activating peptides produced an oedema response that was not reduced by indomethacin and was only slightly reduced in rats pretreated with compound 48/80. 5. Co-administration of thrombin together with a PAR1 activating receptor resulted in a significantly smaller oedema response than that seen with the PAR1 activating peptide alone. This anti-inflammatory effect of thrombin was abolished by pre-incubation with hirudin. 6. These results demonstrate that the pro-inflammatory effects of thrombin occur through a mast-cell dependent mechanism that is, at least in part, independent of activation of the PAR1 receptor. Moreover, thrombin is able to exert anti-inflammatory effects that are also unrelated to the activation of PAR1.  (+info)

Thrombin induces proteinase-activated receptor-1 gene expression in endothelial cells via activation of Gi-linked Ras/mitogen-activated protein kinase pathway. (7/888)

We addressed the mechanisms of restoration of cell surface proteinase-activated receptor-1 (PAR-1) by investigating thrombin-activated signaling pathways involved in PAR-1 re-expression in endothelial cells. Exposure of endothelial cells transfected with PAR-1 promoter-luciferase reporter construct to either thrombin or PAR-1 activating peptide increased the steady-state PAR-1 mRNA and reporter activity, respectively. Pretreatment of reporter-transfected endothelial cells with pertussis toxin or co-expression of a minigene encoding 11-amino acid sequence of COOH-terminal Galphai prevented the thrombin-induced increase in reporter activity. Pertussis toxin treatment also prevented thrombin-induced MAPK phosphorylation, indicating a role of Galphai in activating the downstream MAPK pathway. Expression of constitutively active Galphai2 mutant or Gbeta1gamma2 subunits increased reporter activity 3-4-fold in the absence of thrombin stimulation. Co-expression of dominant negative mutants of either Ras or MEK1 with the reporter construct inhibited the thrombin-induced PAR-1 expression, whereas constitutively active forms of either Ras or MEK1 activated PAR-1 expression in the absence of thrombin stimulation. Expression of dominant negative Src kinase or inhibitors of phosphoinositide 3-kinase also prevented the MAPK activation and PAR-1 expression. We conclude that thrombin-induced activation of PAR-1 mediates PAR-1 expression by signaling through Gi1/2 coupled to Src and phosphoinositide 3-kinase, and thereby activating the downstream Ras/MAPK cascade.  (+info)

Thrombin-induced p65 homodimer binding to downstream NF-kappa B site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. (8/888)

We investigated the mechanisms by which proinflammatory mediator, thrombin, released during intravascular coagulation and tissue injury, induces ICAM-1 (CD54) expression in endothelial cells. Stimulation of HUVEC with thrombin resulted in dose- and time-dependent increases in ICAM-1 mRNA and cell surface expression and in ICAM-1-dependent endothelial adhesivity toward polymorphonuclear leukocytes. Transient transfection of endothelial cells with ICAM-1 promoter luciferase reporter gene (ICAM-1LUC) constructs indicated that deletion of upstream NF-kappa B site (-533 bases from translation start site) had no effect on thrombin responsiveness, whereas mutation/deletion of downstream NF-kappa B site (-223 bases from the translation start site) prevented the activation of ICAM-1 promoter, indicating that the downstream NF-kappa B site is critical for thrombin inducibility. NF-kappa B-directed luciferase activity increased approximately 3-fold when cells transfected with the plasmid pNF-kappa BLUC containing five copies of consensus NF-kappa B site linked to a minimal adenovirus E1B promoter-luciferase gene were exposed to thrombin, indicating that activation of NF-kappa B was essential for thrombin response. Gel supershift assays demonstrated that thrombin induced binding of NF-kappa Bp65 (Rel A) to downstream NF-kappa B site of the ICAM-1 promoter. Thrombin receptor activation peptide, a 14-amino-acid peptide representing the new NH2 terminus of proteolytically activated receptor-1, mimicked thrombin's action in inducing ICAM-1 expression. These data indicate that thrombin activates endothelial ICAM-1 expression and polymorphonuclear leukocyte adhesion by NF-kappa Bp65 binding to the downstream NF-kappa B site of ICAM-1 promoter after proteolytically activated receptor-1 activation.  (+info)