Insulin inhibits growth hormone signaling via the growth hormone receptor/JAK2/STAT5B pathway. (9/619)

Insulin is important for maintaining the responsiveness of the liver to growth hormone (GH). Insulin deficiency results in a decrease in liver GH receptor (GHR) expression, which can be reversed by insulin administration. In osteoblasts, continuous insulin treatment decreases the fraction of cellular GHR localized to the plasma membrane. Thus, it is not clear whether hyperinsulinemia results in an enhancement or inhibition of GH action. We asked whether continuous insulin stimulation, similar to what occurs in hyperinsulinemic states, results in GH resistance. Our present studies suggest that insulin treatment of hepatoma cells results in a time-dependent inhibition of acute GH-induced phosphorylation of STAT5B. Whereas total protein levels of JAK2 were not reduced after insulin pretreatment for 16 h, GH-induced JAK2 phosphorylation was inhibited. There was a concomitant decrease in GH binding and a reduction in immunoreactive GHR levels following pretreatment with insulin for 8-24 h. In summary, continuous insulin treatment in rat H4 hepatoma cells reduces GH binding, immunoreactive GHR, GH-induced phosphorylation of JAK2, and GH-induced tyrosine phosphorylation of STAT5B. These findings suggest that hepatic GH resistance may develop when a patient exhibits chronic hyperinsulinemia, a condition often observed in patients with obesity and in the early stage of Type 2 diabetes.  (+info)

Differential regulation of IGF-I, its receptor and GH receptor mRNAs in the right ventricle and caval vein in volume-loaded genetically hypertensive and normotensive rats. (10/619)

It has been suggested, mainly by in vitro findings, that cardiovascular tissue in the spontaneously hypertensive rat (SHR) should be more prone to proliferate/hypertrophy than that of the Wistar-Kyoto rat (WKY). The present study tests the hypothesis that the tissue of the low-pressure compartment in SHR, being structurally similar to that of the WKY, shows an increased growth response due to activation of the GH-IGF-I system. An aortocaval fistula (ACF) was induced in 64 SHR and WKY male rats and 44 rats served as controls. They were all followed for 1, 2, 4 and 7 days after surgery. In separate groups of SHR (n=4) and WKY (n=3), central venous pressure was measured by telemetry recordings prior to opening of the fistula and for up to 16 h post-surgery. Systolic blood pressure was measured during the week post-surgery. The right ventricular (RV) and the caval vein IGF-I mRNA and RV IGF-I receptor and GH receptor mRNAs were quantitated by means of solution hybridisation assay. In rats with ACF the systolic blood pressure decreased, approximately 29% in SHR and 16% in WKY between 1 and 7 days post-surgery (P<0.05, n=5-6 in each group). SHR with ACF showed a transient elevation in central venous pressure vs WKY. Within the week following fistula induction both strains showed a similar, pronounced increase in RV hypertrophy. SHR with ACF showed a smaller, or even blunted, overall response with respect to activation of the GH-IGF-I system compared with WKY, the latter showing clear-cut elevation of gene expressions. Two days after shunt opening in SHR, RV and caval vein IGF-I mRNA increased by 57% and 108% (P<0.05 for both, n=5-6 in each group) respectively, and these expressions were then turned off, whereas RV GH receptor and IGF-I receptor mRNA expression remained unaffected compared with WKY rats. WKY rats showed on average a later and a greater response of GH-IGF-I system mRNA expression vs SHR. The present in vivo study suggests that the SHR requires less activation of the GH-IGF-I system for creating a given adaptive structural growth response.  (+info)

Studies with a growth hormone antagonist and dual-fluorescent confocal microscopy demonstrate that the full-length human growth hormone receptor, but not the truncated isoform, is very rapidly internalized independent of Jak2-Stat5 signaling. (11/619)

We have investigated trafficking of two negative regulators of growth hormone receptor (GHR) signaling: a human, truncated receptor, GHR1-279, and a GH antagonist, B2036. Fluorescent-labeled growth hormone (GH) was rapidly internalized by the full-length GHR, with >80% of the hormone internalized within 5 min of exposure to GH. In contrast, <5% of labeled GH was internalized by cells expressing truncated GHR1-279. Using another truncated receptor, GHR1-317 fused to enhanced green fluorescent protein (EGFP), we have exploited fluorescence energy transfer to monitor the trafficking of ligand-receptor complexes. The data confirmed that internalization of this truncated receptor is very inefficient. It was possible to visualize the truncated GHR1-317-EGFP packaged in the endoplasmic reticulum, its rapid movement in membrane bound vesicles to the Golgi apparatus, and subsequent transport to the cell membrane. The GH antagonist, B2036, blocked Jak2-Stat5-mediated GHR signaling but was internalized with a similar time course to native GH. THE RESULTS: 1) demonstrate the rapid internalization of GH when studied under physiological conditions; 2) confirm the hypothesis that internalization of cytoplasmic domain truncated human GHRs is very inefficient, which explains their dominant negative action; and 3) show that the antagonist action of B2036 is independent of receptor internalization.  (+info)

A missense mutation in the GHR gene of Cornell sex-linked dwarf chickens does not abolish serum GH binding. (12/619)

Sex-linked dwarfism (SLD) in chickens is characterized by impaired growth despite normal or supranormal plasma growth hormone (GH) levels. This resistance to GH action is thought to be due to mutations of the GH receptor (GHR) gene that reduce or prevent GH binding to target sites. The genetic lesion causing GH resistance in Cornell SLD chickens is, however, not known. Previous studies have shown that hepatic GH-binding activity is abnormally low in these birds, yet the GHR gene is transcribed into a transcript of appropriate size and abundance. Point mutations or defects in translation could therefore account for the impaired GHR activity in this strain. These possibilities were addressed in the present study. A missense mutation resulting in the substitution of serine for the conserved phenylalanine was identified in the region of the GHR cDNA encoding the extracellular domain. Translation of this mutant transcript was indicated by the presence of GHR/GH-binding protein (GHBP)-immunoreactive proteins in liver (55, 70 and 100 kDa) and serum (70 kDa) of normal (K) and SLD birds. Radiolabelled GH did not, however, bind to the hepatic membranes of most SLD chickens. Serum GH-binding activity, in contrast, was readily detectable, although at significantly lower levels than in normal birds. The missense mutation in the SLD GHR gene may thus affect targeting of GHRs to hepatic plasma membranes.  (+info)

Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. (13/619)

Long (ObRb) and short (ObRa) leptin receptor isoforms are thought to play essential roles in mediating leptin signaling and the transport and degradation of leptin, respectively. Although the capacity of these cloned receptor species to mediate signal transduction has been reported, there is no information on the ability of individual receptor species to mediate leptin internalization and degradation or to undergo ligand-induced downregulation. We therefore studied these parameters in Chinese hamster ovary (CHO) cells stably expressing either ObRa or ObRb isoforms of the leptin receptor. We determined that both ObRa and ObRb mediated internalization of 125I-labeled leptin by a temperature- and coated pit-dependent mechanism. Both ObRa and ObRb also mediated degradation of 125I-leptin by a lysosomal mechanism, and this was more efficiently mediated by ObRa in these cells. Neither leptin internalization nor degradation by ObRa was affected by mutation of the conserved Box 1 motif. By studying deletion mutants of ObRa, we found that efficient internalization was dependent on a motif located between amino acids 8 and 29 of the intracellular domain of ObRa. Exposure of cells expressing ObRa or ObRb to unlabeled leptin for 90 min at 37 degrees C produced downregulation of available surface receptors, and this effect was of greater magnitude in cells expressing ObRb. Whereas CHO cells expressing the growth hormone receptor showed marked downregulation of ligand binding after exposure to dexamethasone (DEX) or phorbol myristic acid (PMA), PMA had no effect on expression of ObRa or ObRb, and DEX reduced binding to cells expressing ObRb by 15%. Thus, the two leptin receptor isoforms, ObRa and ObRb, mediate leptin internalization by a coated pit-dependent mechanism, leptin degradation by a lysosomal pathway, and ligand-induced receptor downregulation. The differential capacity of the two receptor isoforms may relate to the different roles of the receptor isoforms in the biology of leptin.  (+info)

Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. (14/619)

Growth hormone (GH) and IGFs have a long and distinguished history in diabetes, with possible participation in the development of renal complications. To investigate the effect of a newly developed GH receptor (GHR) antagonist (G120K-PEG) on renal/glomerular hypertrophy and urinary albumin excretion (UAE), streptozotocin-induced diabetic and nondiabetic mice were injected with G120K-PEG every 2nd day for 28 days. Placebo-treated diabetic and nondiabetic animals were used as reference groups. Placebo-treated diabetic animals were characterized by growth retardation, hyperphagia, hyperglycemia, increased serum GH levels, reduced serum IGF-I, IGF-binding protein (IGFBP)-3, and liver IGF-I levels, increased kidney IGF-I, renal/glomerular hypertrophy, and increased UAE when compared with nondiabetic animals. No differences were seen between the two diabetic groups with respect to body weight, food intake, blood glucose, serum GH, IGF-I, and IGFBP-3 levels or hepatic IGF-I levels. Kidney IGF-I, kidney weight, and glomerular volume were normalized, while the rise in UAE was partially attenuated in the G120K-PEG-treated diabetic animals. No effect of G120K-PEG treatment on any of the parameters mentioned above was seen in nondiabetic animals. In conclusion, administration of a GHR antagonist in diabetic mice has renal effects without affecting metabolic control and circulating levels of GH, IGF-I, or IGFBP-3, thus indicating that the effect of G120K-PEG may be mediated through a direct inhibitory effect on renal IGF-I through the renal GHR. The present study suggests that specific GHR blockade may present a new concept in the treatment of diabetic kidney disease.  (+info)

Receptor-mediated internalization is critical for the inhibition of the expression of growth hormone by somatostatin in the pituitary cell line AtT-20. (15/619)

The inhibitory effect of the neuropeptide somatostatin on the expression of growth hormone was measured by quantitative polymerase chain reaction in the pituitary cell line AtT-20. We demonstrate that this effect is dependent on the internalization of somatostatin-receptor complexes and that it is totally independent from the peptide-induced inhibition of adenylate cyclase. Indeed, the inhibitory effect of the peptide on growth hormone mRNA levels was totally insensitive to pertussis toxin treatment but was totally abolished under conditions which block somatostatin receptor internalization. Comparative confocal microscopic imaging of fluorescent somatostatin sequestration and fluorescence immunolabeling of sst1, sst2A, and sst5 receptors suggests that sst2A is most probably responsible of the inhibitory effect of somatostatin on growth hormone expression.  (+info)

Glucose and amino acids interact with hormones to control expression of insulin-like growth factor-I and growth hormone receptor mRNA in cultured pig hepatocytes. (16/619)

Nutrients and hormones are major determinants of animal growth, but the mechanisms of how nutrients influence the growth process are still unclear. A primary pig hepatocyte culture system was used to investigate possible direct effects of glucose and individual amino acids on the expression of growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-I) mRNA. The removal of glucose from the culture medium for 40 h resulted in significant reductions (to 45% of control, P = 0.013) in the expression of GHR in the presence of growth hormone (GH), dexamethasone (DEX) and tri-iodothyronine (T3). The decrease in GHR expression with removal of glucose from the culture medium resulted in a decreased response in class 1 (22% of control, P = 0.011) and 2 (5% of control P = 0. 068) transcripts of IGF-I to any GH added. The effects of glucose on GHR and IGF-I expression were dose-dependent, appearing to plateau at approximately 1-2 g/L (P = 0.031, for quadratic trend). Removal of arginine, proline, threonine, tryptophan or valine inhibited the stimulation of IGF-I expression that was induced by the combination of T3, DEX and GH (to 15, 6, 11, 16 and 16% of control, respectively, P < 0.05), with significant decreases in GHR expression also observed in some cases. The stimulatory effect of some of these amino acids (arginine, proline, threonine and tryptophan) was dose-dependent for expression of class 1 transcripts of IGF-I (P = 0. 041, 0.022, 0.016 and 0.097, respectively, for linear trends), but there was no effect on GHR or class 2 transcripts of IGF-I. Whether the observed effects of nutrients on mRNA levels are due to direct effects on gene transcription or differences in mRNA stability remains to be established. Energy, in the form of glucose, appears to control GHR expression, interacting with the effects of glucocorticoids and thyroid hormones, whereas protein, in the form of certain individual amino acids, appears to control GH-stimulated IGF-I expression.  (+info)